
www.manaraa.com

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films the

text directly from the original or copy submitted. Thus, some thesis and

dissertation copies are in typewriter face, while others may be from any type of

computer printer.

The quality of th is reproduction is dependent upon the quality of the copy

subm itted . Broken or indistinct print, colored or poor quality illustrations and

photographs, print bleedthrough, substandard margins, and improper alignment

can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript and

there are missing pages, these will be noted. Also, if unauthorized copyright

material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning

the original, beginning at the upper left-hand comer and continuing from left to

right in equal sections with small overlaps. Each original is also photographed in

one exposure and is included in reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced

xerographically in this copy. Higher quality 6” x 9” black and white photographic

prints are available for any photographs or illustrations appearing in this copy for

an additional charge. Contact UMI directly to order.

Bell & Howell Information and Learning
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA

800-521-0600

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.comReproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

THE IMPACT OF PRESENTING CONCURRENCY IN THE

INTRODUCTORY COMPUTER SCIENCE COURSE

By

Chester Benford Lund, Jr.

B.S. in Electrical Engineering, May 1974, George Washington University

M.S. in Computer Science, May 1977, George Washington University

A Dissertation submitted to

The Faculty of

The School of Engineering and Applied Science

of The George Washington University in partial satisfaction

of the requirements for the degree of Doctor of Science

August 31,1999

Dissertation directed by

Michael Bliss Feldman

Professor of Engineering and Applied Science

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

DM T Number: 9935718

UMI Microform 9935718
Copyright 1999, by UMI Company. All rights reserved.

This microform edition is protected against unauthorized
copying under Title 17, United States Code.

UMI
300 North Zeeb Road
Ann Arbor, MI 48103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

ABSTRACT

The teaching of introductory computer science today is focused on sequential

algorithms and processing. Students are taught from day one to think and design in a

sequential manner. By the time students are introduced to concurrent and parallel

processing, the students are imprinted with sequential algorithmic thought processes.

It is well documented that students who are taught introductory computer science

using the imperative programming paradigm have a difficult time transitioning to the

object-oriented programming paradigm. Students have to unlearn one programming

paradigm in order to learn and use another programming paradigm. The teaching of

introductory computer science using multi-paradigm programming methods has been

documented as successful.

A controlled experiment was devised to teach introductory computer science

students both sequential and concurrency programming to students in their first

programming language course. The experiment was created to potentially answer the

following questions about introducing concurrency and parallelism into a first

programming language course:

• Should it be done?

• How could it be done?

The experiment was conducted by actually teaching a course that introduced both

sequential and concurrent concepts together to novice programming students. The first

question should be answered with a simple yes or no. The second question may have

many possible answers; a target of this experiment was to provide an answer (given that

the answer to the first question is yes).

ii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

ACKNOWLEDGEMENTS

The author gratefully acknowledges all of the following:

• My wife, Katherine, for her unceasing patience and loving support

• Professor Michael Feldman, my advocate and advisor, for patient wisdom and
for always being there when needed

• Dr. Bruce Bachus, for his guidance, driving force, and pushing me to continue

• Professor John McCormick, for understanding and good council

• Professors Diane Martin and Robert Harrington, for their guidance and
support

• Eun-Joung Ko ("EJ") for her faithfulness and patience as the teaching assistant
for the three semesters of this experiment

Thanks and praise to the Lord, Jesus Christ, by whose mercy and gifts, this work could be
done. Amen.

iii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

TABLE OF CONTENTS

ABSTRACT..ii

ACKNOWLEDGEMENTS..iii

TABLE OF CONTENTS..iv

LIST OF FIGURES... viii

1 INTRODUCTION... 1

1.1 Pr o b lem St a t e m e n t .. 1

1.2 N o v ic e Pr o g ram m ing St u d e n t .. 2

1.3 O v e r v ie w ... 2

1.4 R esea r ch Q u est io n s ..3

1.5 M eth o d o lo g y O v e r v ie w .. 4

1.5.1 Subject Groups..4

1.5.2 Periods o f Comparison...5

1.5.3 Observation, Collection o f Data... 5

1.6 D isserta tio n O u tlin e ... 6

2 LITERATURE SEARCH...7

2.1 C o n c u r r en c y As A P a r a d ig m ...7

2.2 C o m pu ter Sc ien c e C u r r ic u l u m ... 12

2.3 T ea c h in g Co n c u r r e n c y ...15

2.3.1 Teaching Concurrency In CS1.. 15

2.3.2 Teaching Concurrency to Freshman within a CS2 course............................... 17

2.3.3 Teaching Concurrency To Second-Year Students.. 20

2.3.4 Teaching Concurrency To Third-Year and Fourth-Year Students................... 24

2.4 Un iq u e A ppr o a c h to C o n c u r r en c y - S isa l ...25

2.5 C o n c u r r en c y as a P a ra d ig m a nd T ea ch ing C o n c u r r en c y T o d a y 26

2 .6 C o m m o n In tr o d u cto ry C o n cu rren cy M a t e r ia l s ..29
iv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

2.6.1 Concepts in Use..29

2.6.2 Languages in Use..31

2.7 T ea c h in g CS1 St u d e n t s .. 36

3 EXPERIMENTAL METHOD...38

3.1 O v er v iew O f T h e E x p e r im e n t .. 38

3.2 C h o ices N o t A v a ila ble In T h e Ex p e r im e n t ...40

3.3 C o n sta n ts In T h e Ex p e r im e n t ...40

3.4 T y pes O f In fo r m a tio n C o l l e c t e d ..41

3.5 Ex per im en ta l D e s ig n ...44

3.6 V a lid ity T h rea ts and T h eir P r e v e n t io n ... 46

3.7 An a l y sis T o o l s ...48

3.8 A d d itio n a l In f o r m a t io n ..51

4 COURSE CONTENT OVERVIEW..54

4.1 C u r r e n t C S 1 C o u r se O u tl in e .. 54

4.2 R ev ised CS1 C o u r se O utlin e , F all 1997 Se m e s t e r ... 60

4.3 A d d itio n a l M a ter ia ls In tr o d u ced to the F all 1997 C la ss , t h e Co n tr o l

G r o u p ...61

4.4 In tr o d u c t o r y C o n c u r r en c y and P a ra llelism M a teria ls to be In c lu d ed .63

4.5 In tr o d u cto ry C o n c u r r en c y and Pa ra llelism M a teria ls to be Ex c lu d ed 68

4.6 T o pic s W ith R em o v ed , R ed u c ed , O r C hanged C o v e r a g e 69

4.7 R ev ised CS1 C o u rse O u tlin e , F all 1998 S e m e s t e r ..70

5 RESULTS...72

5.1 St u d e n t Po pu l a t io n s ...72

5.2 C o m pa r a bility o f th e G r o u ps .. 78

5.2.1 Mid-Term Exam.. 79

5.2.2 Pre-Concurrency Projects..83

5.3 A ssessm en t O f C o n c u r r en c y In str u ctio n On L earn ing Sequ en tia l

M a t e r ia l ...88

v

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

5.4 C o n c u r r en c y M a teria ls An d Seq u en tia l M a ter ia ls Per fo r m a n c e

C o m p a r is o n ... 97

5.5 C o m pa r iso n o f Stu d en t P erfo rm a n ce o n a La r g e P r o je c t112

5.6 F in ding s fo r t h e Com pila tio n o f C o n c u r r en c y and S eq u en tia l P r o g r a m s

..117

5.7 C o rr ela tio n o f Stu d en t C hara cteristics to St u d e n t Pe r fo r m a n c e 128

5.8 V a lid ity a n d S ensitivity C h ec k ... 137

5.8.1 Internal Validity...137

5.8.2 Generalization o f the Experimental Results..141

5.8.3 Sensitivity o f the Assessment o f Concurrency Instruction On Learning

Sequential Material..149

5.8.4 Detailed Analysis o f Student Withdrawals... 152

5.9 H y po th esis a nd F in d in g s ...155

6 CONCLUSIONS AND FUTURE RESEARCH..161

6.1 C o n c l u s io n s ..161

6.2 F u tu re Re s e a r c h .. 162

6.2.1 Extending the Experiment..162

6.2.2 Sequencing o f Course Materials..163

6.2.3 Language and Compiler Characteristics...165

B IB L IO G R A P H Y ...168

A PPE N D IX A . D E FIN IT IO N S.. 179

A PPE N D IX B. SY LLA B U S A N D IN S T R U C T IO N S ...181

A PPE N D IX C. STU D EN T A C K N O W LED G EM EN T F O R M ... 191

A PPE N D IX D . PR O JEC T A SSIG N M EN TS, C O N TR O L G R O U P192

A PPE N D IX E . PR O JE C T A SSIG N M EN TS, T R E A TM EN T G R O U P S 208

A PPE N D IX F . M ID -T ER M E X A M IN A T IO N ...225

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

APPENDIX G. FINAL EXAMINATION...246

APPENDIX H. CLASS SURVEY... 278

APPENDIX I. STUDENT DEMOGRAPHIC DATA... 279

APPENDIX J. EXAMINATION AND PROJECT SCORES.. 286

APPENDIX K. COMPILATION DATA...301

APPENDIX L. CONCURRENCY PROGRAMMING (NON-HYPOTHESIS) PROJECT

SCORES.. 306

APPENDIX M. STATISTICAL TESTS.. 308

APPENDIX N. INTRODUCTORY ADA CONCURRENCY SUMMARY................314

vii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

LIST OF FIGURES

Figure 5.1. Novice Student Age By Semester... 77

Figure 5.2. Novice Student Mid-Term Scores... 80

Figure 5.3. Novice Students, Control Group, Mid-Term Scores..................................... 81

Figure 5.4. Novice Students, Spring 1998 Treatment Group, Mid-Term Scores............ 82

Figure 5.5. Novice Students, Fall 1998 Treatment Group, Mid-Term Scores................ 82

Figure 5.6. Project Scores (Pre-Concurrency), With Zero Project Scores...................... 84

Figure 5.7. Project Scores All Projects Completed (Pre-Concurrency).......................... 86

Figure 5.8. Project Scores, All Projects Completed (Pre-Concurrency) (All Groups

Together).. 87

Figure 5.9. Final Exam Six Sequential Question Scores..89

Figure 5.10. Final Exam Five Sequential Question Scores..92

Figure 5.11. Final Exam Five Sequential Question Scores (Novice Students, Fall 1997

Control Group)..94

Figure 5.12. Final Exam Five Sequential Question Scores (Novice Students, Spring 1998

Treatment Group)..95

Figure 5.13. Final Exam Five Sequential Question Scores (Novice Students, Fall 1998

Treatment Group)..95

Figure 5.14. Sequential / Concurrency Material Comparison, Spring 1998 Group.........98

Figure 5.15. Sequential / Concurrency Material Comparison, Fall 1998 Group..............99

Figure 5.16. Comparison of Treatment Concurrency Material Performance................. 102

Figure 5.17. Question 2 - Semaphores, Spring 1998 Group (Sequential Index To

Question 2 Score Comparison)... 103

Figure 5.18. Question 2 — Semaphores, Fall 1998 Group (Sequential Index To Question

2 Score Comparison).. 104

Figure 5.19. Histogram of Reading Code Question Scores For Spring 1998 Treatment

Group.. 107

Figure 5.20. Histogram of Read Code Question Scores For Fall 1998 Treatment Group

.. 107
viii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Figure 5.21. Histogram of Message Passing Question Scores For Spring 1998 Treatment

Group..109

Figure 5.22. Histogram of Message Passing Question Scores For Fall 1998 Treatment

Group..109

Figure 5.23. Histogram of Shared Memory Question Scores For Spring 1998 Treatment

Group.. I l l

Figure 5.24. Histogram of Shared Memory Question Scores For Fall 1998 Treatment

Group.. I l l

Figure 5.25. Project Nine Scores..113

Figure 5.26. Histogram of Project Nine Scores, Fall 1997 Control Group..................115

Figure 5.27. Histogram of Project Nine Scores, Spring 1998 Treatment Group..........115

Figure 5.28. Histogram of Project Nine Scores, Fall 1998 Treatment Group............. 116

Figure 5.29. Compilation Ratio for Projects (P9 / P2-5)..119

Figure 5.30. Distinct Error Messages..122

Figure 5.31. Error Ratio (Total Errors / Distinct Errors).............................124

Figure 5.32. Histogram of Error Ratio (Total Errors / Distinct Errors) Fall 1997 Control

Group..126

Figure 5.33. Histogram of Error Ratio (Total Errors / Distinct Errors) Spring 1998

Treatment Group...126

Figure 5.34. Histogram of Error Ratio (Total Errors / Distinct Errors) Fall 1998

Treatment Group...127

Figure 5.35. Final Exam Questions ~ Sequential Material, Male / Female Comparison

.. 130

Figure 5.36. Final Exam Questions — Concurrency Material, Male / Female Comparison

..131

Figure 5.37. Concurrency Material Project Nine Scores, Male / Female Comparison.. 132

Figure 5.38. Final Exam Questions -- Sequential Material, College Year Comparison 133

Figure 5.39. Final Exam Questions — Concurrency Material, College Year Comparison

..134

Figure 5.40. Concurrency Material Project Nine Scores, College Year Comparison.... 136

ix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

X

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

1 INTRODUCTION

1.1 Problem Statement

Concurrency and parallelism exist today in programming practice from motion

picture animation to financial and banking applications. Concurrency and parallelism are

an intrinsic part of parallel and distributed computing. Parallel and distributed computing

will be shown to pervade many areas of the undergraduate computer science curriculum.

Today novice programming students learn to think of computers and computation as a

sequential engine for one or more courses before concurrency is introduced. The earliest

introductions of concurrent material documented (found in the literature search) are

fragmentary introductions of the topic into the computer science course one (CS1)

curriculum. The earliest non-fragmentary introduction of the concurrent materials

documented (found in the literature search) is in the computer science course two (CS2)

curriculum [Hurley, 1994].

The significance of this experiment is that it:

• demonstrates that teaching concurrency to novice programming students can

be done without significant loss of performance in other materials taught;

• demonstrates a working model of a computer science course one (CS1)

curriculum that incorporates concurrency;

• provides empirical data on the side-effects of introducing concurrency early in

the CS1 curriculum; and

• provides sufficient course materials for the introduction of concurrency in CS1

that the study can be replicated.

The introduction of sequential and concurrent programming in the same course

should minimize transition problems between sequential and concurrent programming.

This is similar to Decker’s and Hirshfield’s observation [Decker, 1994, page 53] that

students who are taught object-oriented programming first simply avoid transition

problems between imperative programming and object-oriented programming.

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

1.2 Novice Programming Student

For the purpose of this experiment, a novice programming student is defined as

follows:

• Student entering his or her first computer science programming language

course

• Student has no or inconsequential exposure on any of the following levels:

1. Collegiate programming

2. Professional programming

3. Tool creation programming

Collegiate programming is the design, coding, and implementation of programs as part of

a college curriculum. Professional programming is the design, coding, and

implementation of software systems and programs as an occupation. Tool creation

programming is the design, coding, and implementation of programs used as tools as part

of a different occupation. An example of tool creation programming is an electrical

engineer who creates programs that simulate circuits. No exposure is self-explanatory.

Inconsequential exposure is defined as exposure that has minimal impact on student

performance in learning to program (the student has learned and retained little or

nothing). A common example of inconsequential exposure results from a student taking

a one semester computer applications overview class where the student learns about word

processing, spreadsheets, presentations, electronic mail, and some programming (such as

Basic, "C", or Pascal).

1.3 Overview

The programming language used in the experiment is Ada 95. Ada 95 was

selected over several other programming languages for the following reasons (see Section

4 for more details):

• Ada 95 contains concurrent programming language constructs;

• Ada 95 concurrent programming language constructs have minimal

differences in syntactic structure between sequential procedures and

concurrent tasks;

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

• Ada 95 concurrent programming language constructs are imbedded into the

design of the language and are not extensions or layered macros to a base

sequential language; and

• Ada 95 is the programming language used in the George Washington

University (GWU) CS1 course CSci 51 — Introduction to Computing.

Several other languages were given serious consideration for the experiment.

The following are presumed to be true by definition of a novice programming

student:

• No or inconsequential exposure to a multi-user computer

• No or inconsequential exposure to a high-level language

• No or inconsequential exposure to a multi-user operating system

• No or inconsequential exposure to a programming editor (for the purpose of

this experiment a word processing program is not considered a programming

editor)

• No or inconsequential exposure to computer architecture

Thus, all the above items are new to the entering CS1 student.

The programming environment to be used by the CS1 student is as follows:

• Unix operating system — Solaris 2.5 (Unix 5.5)

• A multiprocessor server architecture computer (similar to the SUN

SPARCserver)

• Ada 95 programming language

• VI programming editor

1.4 Research Questions

This research project examines three questions:

Question 1 — Does teaching concurrency to novice programmers reduce their test

performance on sequential material?

Hypothesis 1: Students who have had concurrency training will have
significantly lower sequential test question scores than those who have not
had concurrency training.

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Null Hypothesis 1: There is no difference in the sequential test question
scores between a student who has had concurrency training and a student
who has not had concurrency training.

Question 2 — After instruction in concurrency, are novice programmers more /

less able to solve concurrent questions than sequential questions?

Hypothesis 2: Students, with both sequential and concurrency instruction,
will score significantly different on concurrency test questions than on
sequential test questions.

Null Hypothesis 2: There is no difference in the concurrency test question
scores and sequential test question scores.

Question 3 ~ Are novice programmers less able to use concurrent methods than

sequential methods on "large" projects?

Hypothesis: Students who use concurrent methods on a "large" project
will have significantly lower project scores than those who use sequential
methods.

Null Hypothesis: There is no difference in "large" project scores between a
student using concurrent methods and sequential methods.

In addition, the study examines differences in compile error profiles of students using

concurrent and sequential methods on "large" projects. The profile examined is the

distinct error ratio (DER). DER is the ratio of total occurrences of compilation errors to

number of distinct errors.

1.5 Methodology Overview

1.5.1 Subject Groups

The control and treatment groups in the experiment were as follows:

• The CS1 course in the Fall of 1997 was taught using traditional methods and

materials (the control group)

• The CS1 course in the Spring of 1998 was taught using the revised methods

and materials for concurrency and parallelism (the first treatment group)

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

• The CS1 course in the Fall of 1998 was taught using the revised methods and

materials for concurrency and parallelism (the second treatment group)

1.5.2 Periods of Comparison

There were two treatment groups used to demonstrate that the experimental

results are reproducible and consistent within the two treatment groups. The CSci 51

class was divided into two time periods:

• Period one -- the first eight weeks of the semester

• Period two -- the second eight weeks of the semester

During period one both the control group and the treatment groups received the same

instructional materials (all sequential material). During period two, the control group

continued to receive the traditional lectures and materials (all sequential materials), while

the treatment groups also received both traditional (sequential) and experimental

(concurrency) lectures and materials.

1.5.3 Observation, Collection of Data

Student progress and work were collected in a non-intrusive manner. Grade

information collected included projects, mid-term exams, final exams, and compilation

data. Information collected during period one allowed for a comparison of the similarity

of the three subject groups; project scores and mid-term scores for the groups were

compared. Information collected during period two allowed for a comparison of the

control and treatment groups; project scores and final exam question scores were

collected to allow the testing of the hypotheses.

In addition, student compilation data was collected during the entire course. Each

compilation and each program link was recorded using Unix shell scripts:

• The shell script named “gcompile” encapsulates the traditional shell script of

the same name. The source listing and compiler error and warning messages

for each compilation are recorded by the student.

• The shell script named “glink” encapsulates the traditional shell script of the

same name. The input data from each execution is recorded.

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Students were told at the beginning of the course that their compilation and program

executions would be recorded. However, the shell scripts used in the recording process

were transparent to the student. In addition, the students’ mid-term and final exam papers

were copied and analyzed.

1.6 Dissertation Outline

The dissertation is organized into six chapters. The chapters are as follows:

1. Introduction — presents an overview of the experiment and its significance

2. Literature Search ~ presents the literature search results for the following:

introductory concurrency and parallelism materials, documented research in

the introductory concurrency and parallelism, and teaching introductory

courses at the undergraduate level

3. Experimental Method — presents the methodology of how the experiment was

conducted and how the experimental data were be recorded

4. Course Content Overview - presents the current introductory courses

materials and the replacement course materials

5. Results — presents the experimental results and observations of the experiment

6. Conclusions and Future Work — presents conclusions and topics of future

research that directly follow the completion of this work

Appendices — presents the following items: definitions, course syllabus,

homework project assignments, student demographic data, raw test scores,

raw compilation error data, and statistical data

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

2 LITERATURE SEARCH

This section of the document presents the literature search on concurrency and

how concurrency is taught today. This section discusses the following materials in the

order listed:

• Concurrency as a paradigm

• Computer science curriculum

• Teaching concurrency

• Unique approach to concurrency — Sisal

• Concurrency as a paradigm and teaching concurrency today

• Common introductory concurrency materials and languages

• Teaching CS1 students

Section Four of this document presents the current introductory course materials, the

replacement course materials, and the schedule of material presentation. As such, the

overview of computer science curriculum is presented in that section.

2.1 Concurrency As A Paradigm

Concurrency is a programming paradigm. King [King, 1992] presented a paper

on the evolution of programming languages. In this paper King cited the language

paradigms covered in texts about programming languages. Wegner [King, 1992] used the

concept of a language paradigm a method of classifying programming languages. The

language paradigms cited in King's paper were:

• Concurrent

• Database

• Functional

• Imperative (also called procedural)

• Logic

• Object-oriented

Of the 15 textbooks referenced in the paper, twelve (12) texts presented at least some

discussion of concurrency as a language paradigm. The textbooks covered in the article

have dates from 1981 to 1991.

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Before entering into a discussion on concurrency as a paradigm, it is important to

define concurrency (or concurrent) and distinguish concurrency from parallelism. For the

purpose of this document the following definitions [Paralogic, 1996] are given:

• Concurrent — "two or more things can be done independently, but not

necessarily on different processors [one or more processors]"

• Parallel — "two or more things can be done independently at the same time on

different processors"

By these definitions, several users on one workstation constitute concurrent operation.

Ben-Ari [Ben-Ari, 1990] defines a concurrent program as "a set of ordinary sequential

programs which are executed in abstract parallelism". The Paralogic definition matches

with Ben-Ari's definition in that the number of processors is not implied. Paralogic's

definition of parallelism requires two or more processors. Ben-Ari's definition does not

imply the number of processors (multiple processes on a single processor fits the

definition). Using these definitions, the following distinction between concurrency and

parallelism is true:

• Parallelism implies concurrency

• Concurrency does not imply parallelism

This distinction is important — concurrency is an abstraction in creating software, while

parallelism [Paralogic's view] implies a division of activity across processors. Although

concurrent processes can be modeled, as if they are executing on multiple processors, the

processes can share execution on a single processor. Implementation is separate from

processing modeling. For example, using the Concurrent Design Approach for Real-

Time Systems method (CODARTS, pronounced "code arts") [Gomaa, 1993], a process

designer does not need to distinguish between concurrency and parallelism. Hence, a

student studying concurrency does not need to differentiate between the concurrency and

parallelism. CODARTS is a relatively new methodology that supports modeling

processes and objects naturally in a concurrent manner.

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Concurrency is a natural consequence o f modeling specific problems. There are

many classes of problems whose formulation and subsequent algorithms are inherently

concurrent [Bums, 1995]:

• Process control

• Air traffic control

• Avionics systems

• Industrial robots

• Engine controllers

• Domestic appliances

• Environmental monitors

All these applications in their implementation have the characteristics of being time-

dependent (real-time), embedded, and may be complicated. However, all these

applications have simplistic components that are easily modeled.

There exist problems that are easier to model using concurrency. One type of

problem that is easier to model using concurrency is independent objects that have co

dependencies. Edsger Dijkstra's famous "dining philosophers" problem, published in

1971, is classic example of this type of problem. Five philosophers do only two activities

— thinking and eating [Ben-Ari, 1990]. Dijkstra's rules for the correct behavior of the

philosophers are as follows:

• Philosopher must have two forks to eat

• Two philosophers cannot share a fork

• All philosophers cannot hold a single fork

• A philosopher cannot starve

• Philosophers behave efficiently (in the absence of contention)

The form of the concurrent solution given by Ben-Ari is given below:
task body philosopher is
begin

loop
think;
pre_protocol;
eat;
post jprotocol;

end loop;
end philosopher;

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

The pre_protocol and post_protocoI can be implemented as semaphores; such that, the

philosopher tasks follow Dijkstra's rules. This example is both childish and simpie.

However, it demonstrates the ease with which certain classes of problems are modeled

and solved (algorithm specified) by concurrency. Concurrency is a paradigm for

modeling certain classes of real world problems. Some of these problems are sufficiently

simple to be understood by entry-level computer science students.

Ben-Ari [Ben-Ari, 1990] asserted the need for concurrency as a paradigm by

specifying the following:

• "Important techniques used in creating software abstractions are encapsulation

and concurrency"

• "Concurrent programming is an abstraction that is designed to make it

possible to reason about the dynamic behavior of programs"

The concurrent paradigm creates design possibilities that are difficult to model in

a sequential model. Many of these possibilities come from having multiple processes

within a single program:

• Processes allow a program to do more than one thing at a time. For example,

a database application has a database file writer process, query processes, and

a log process running simultaneously [Oracle, 1992].

• Processes can be modeled after real objects. This may be the easiest way to

model and program a real world object, because this real object can have

independent and autonomous actions [Gomaa, 1998].

• Processes augment object-oriented behavior. Processes allow for

asynchronous messaging; such that, when object "a" sends a message to object

"b", object "a" can continue processing without waiting for object "b" to

respond.

• Processes can be suspended, resumed, and stopped independently; this is

difficult to model and implement in a sequential program.

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Traditional CS1 and CS2 courses use the sequential computational model, the

classical von Neumann model (this conclusion can be drawn from the information

presented in the next subsection). This classical model does not easily, or at all, include

many classes of problems because of their inherently concurrent or parallel nature.

Introducing the concurrent paradigm to entry-level computer science allows these

students to understand and recognize a larger scope of problems (applications).

There is a second reason for introducing concurrency and parallelism to students.

There are applications whose computer resource requirements are not meet by available

or existing computers. Characteristics of these problems are as follows:

• Excessive execution time (the need for faster computation)

• The application is near the limits of existing single processor computers

• An aspect of the application has insufficient resources (the problem is too

large)

General examples of applications requiring high performance computing include the

following:

• Weather programs

• Database programs

• Air traffic control programs

• Avionics programs

Examples of problems found in large database applications include search times, access

times, and data mining. These applications areas require tremendously fast

computational capability. Students should be able to recognize that "one purpose of

parallel processing is to perform computations faster than can be done by a single

processor by using a number of processors concurrently" [Jaja, 1992]. Jaja defines three

factors that contribute to the development of concurrent and parallel processing:

• Hardware costs are dropping -- multiprocessor computers are available at

reasonable cost

• Integrated circuit technology has advanced tremendously — even PC type

computers are available with multiple processors

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

• "The fastest cycle time of a von Neumann-type processor seems to be

approaching fundamental physical limitations beyond which no improvement

is possible"

Concurrency and parallelism can no longer be claimed to be an academic exercise.

Entry-level computer science students should be given the opportunity to understand that

concurrency is a paradigm and a technique for modeling real world problems and as Toll

[Toll, 1997] states it -- that concurrent and parallel programming is "different" and "needs

to be understood".

2.2 Computer Science Curriculum

This subsection of the document presents the Association of Computing

Machinery (ACM) guidelines for computer science curriculum and illustrates the

numerous topics where concurrency and parallelism occur in the curriculum.

The current computer science curriculum guidelines are summarized by Turner, et

al, in the summary of “Curriculum 91” [Turner, et al, 1991]. These curriculum guidelines

are the latest in a series of curriculum guidelines starting in 1968. The ACM published

"Curriculum 68," its first recommendation for undergraduate computer science. A second

set of recommendations was published in 1979, called “Curriculum 1978." Curriculum

1978 specified eight core courses in computer science. In the early 1980s informal

discussions occurred between members of the Institute of Electrical and Electronic

Engineers (IEEE) Computer Society and the ACM Education Board about their working

together in the curriculum area. A joint task force of computer scientists was created in

1985 that included both the ACM and the IEEE Computer Society membership. This

task force, chaired by Peter Denning, created a second task group to produce

recommendations for the entire undergraduate curriculum; the undergraduate task group's

report was presented to the main task force in February 1988. In 1989, “Computing as a

Discipline” specified a breadth-first approach to undergraduate computer science

education and defined nine subject areas. The Joint ACM/IEEE-CS Curriculum Task

Force report was published in March 1991. The report contains "a collection of subject

matter modules called knowledge units that comprise the common requirements for all

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

undergraduate programs in the field of computing." These knowledge units are organized

into subject areas. The joint report extends the subject areas to ten to include social,

ethical, and professional issues.

A summary of the joint task force report was presented in the Communications of

the ACM in June 1991 [Turner, et al, 1991]. Turner stated in the summary report that

"[t]he report recognizes that there are many effective ways to organize a curriculum, even

for a particular set of goals and objectives: it [the report] emphasizes the specification of a

minimal set of subject matter that should be included in all programs along with

guidelines for organizing the subject matter into courses and incorporating additional

material and pedagogy to complete a curriculum." The subject areas are as follows:

• AL: Algorithms and Data Structures (approximately 47 lecture hours)

• AR: Architecture (approximately 59 lecture hours)

• Al: Artificial Intelligence and Robotics (approximately nine lecture hours)

• DB: Database and Information Retrieval (approximately nine lecture hours)

• HU: Human-Computer Communication (approximately eight lecture hours)

• NU: Numerical and Symbolic Computation (approximately 7 lecture hours)

• OS: Operating Systems (approximately 31 lecture hours)

• PL: Programming Languages (approximately 46 lecture hours)

• SE: Software Methodology and Engineering (approximately 44 lecture hours)

• SP: Social, Ethical, and Professional Issues (approximately 11 lecture hours)

Numerous knowledge units within many of these subject areas have explicit references to

concurrency and parallelism; they are as follows:

• AL9: Parallel and Distributed Algorithms

• OS2: Tasking and Processing

• OS3: Process Coordination and Synchronization

• OS4: Scheduling and Dispatch

• OS 10: Distributed and Real-time Systems

• PL12: Distributed and Parallel Programming Constructs

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Further, numerous knowledge units within these subject areas have implicit references to

concurrency and parallelism; they include the following:

• AL3: Recursive Algorithms

• AL4: Complexity Analysis

• AL6: Sorting and Searching

• AR5: Memory System Organization

• AR6: Interfacing and Communication

• AR7: Alternative Architectures

• OS9: Communications and Networking

• PL4: Sequence Control

The programming languages subject area includes the following knowledge units:

• PL 1: History and Overview of Programming Languages

• PL2: Virtual Machines

• PL3: Representation of Data Types

• PL4: Sequence Control

• PL5: Data Control, Sharing, and Type Checking

• PL6: Run-time Storage Management

• PL7: Finite State Automata and Regular Expressions

• PL8: Context-Free Grammars and Pushdown Automata

• PL9: Language Translation Systems

• PL10: Programming language Semantics

• PL 11: Programming Paradigms

• PL 12: Distributed and Parallel Programming Constructs

Many of the programming language knowledge units contain direct inferences to

concurrency and parallelism. The following items provide examples of these inferences:

• Virtual machines includes the subset of parallel virtual machines

• Sequence control includes by definition sequence control operations that

control parallel operations

• Data control, sharing, and type checking includes shared memory which is one

method of interprocess communication

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

• Run-time storage management includes interprocess communication by

message passing is a specialized form of storage management

• Programming paradigms includes paradigms that share very similar behavior -

- object orientation and concurrency and parallelism share message passing

• Distributed and parallel programming constructs includes explicitly

concurrent and parallel constructs (by definition)

In summary, the computer science curriculum specified in Curriculum 91 contains

many references to concurrency and parallelism. In addition, as the application of

concurrency and parallelism becomes more ubiquitous, many subject areas and

knowledge units in the of the curriculum are sufficiently broad to incorporate more

inference to concurrency and parallelism.

2.3 Teaching Concurrency

This subsection is organized around the timing of the initial presentation of

concurrency to students:

• Concurrency introduced within a CS1 course

• Concurrency introduced to freshman within a CS2 course

• Concurrency introduced within the second year of a computer science

curriculum

• Concurrency introduced within the third and fourth years of a computer

science curriculum

The CS1 course is a freshman (first year student) course.

2.3.1 Teaching Concurrency In CS1

Only two references were found to teaching concurrency as part of a CS1

curriculum:

1. VanScoy [VanScoy, 1994] at West Virginia University has prepared three

lectures on Ada 83 tasks that are given at the end of the course. Students learn

to modify existing tasking materials.

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

2. Allen [Allen, 1996] at Duke University has inserted one lab assignment on

"parallel computing". The lab assignment is for students to familiarize

themselves with the parallel computing environment and to run a prepared

problem. (This work is presented in the next section, since teaching

parallelism is reserved for the freshman CS2 course.)

VanScoy's materials were found at the "Asset" web site under the title "Power

Point Documents In Support Of An Ada-Based CS 1 Course". VanScoy working at West

Virginia University (at Morgantown) started teaching CS1 courses in Ada in the fall of

1989. The course materials are in Ada 83. The Department of Statistics and Computer

Science chose Ada for several reasons, among the reasons were the following:

• Support for data abstraction

• Support for generics

• Affordability (inexpensive software available)

• Students should graduate with marketable skills

The course was designed to present 25 lectures over 30 class periods (at a pace of

two classes per week). The philosophy used in preparing the course was for the students

to use "units" provided by the instructor. VanScoy organized the course around six

"units" (general topics):

• Using packages — 5 lectures

• Writing subprograms — 5 lectures

• Designing packages — 3 lectures

• Designing and implementing using types -- 5 lectures

• Implementing packages — 4 lectures

• Using concurrency — 3 lectures

The "using concurrency" unit contained the following lectures:

• Observing tasks

• Using tasks

• Writing tasks

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Important aspects about VanScoy's approach to teaching concurrency are as follows:

• Information on tasks was held to the end of the course (similar to a "last

chapter" in the book approach included for completeness)

• Information on tasks was not integrated into the other units of the course

• Example based approach -- students leam to modify existing tasking materials

(not how to write concurrent logic or code)

Unit 5 was described by the author as a "catch all" unit. This statement adds credence to

the first bullet in the above list. Finally, the course materials were laid out in a curious

manner; for example, generics are introduced in the first unit titled "using packages".

The Feldman text [Feldman, 1996] does not address generics until Chapter 11, which is

outside the designated range of chapters for a CS1 course.

The course materials provided were produced under DARPA contract. The

course materials include the following items:

• Ada source code — 25 files

• Power point briefing materials — 25 files

• Overview

The Power point briefing materials for the concurrency lectures are the Ada source code

placed into slides.

In a controlled experimental setting outside the classroom, Bachus performed an

experiment in the middle 1990s to demonstrate that concurrency could be taught to

"novice" students [Bachus, 1996]. Bachus's definition of a novice included students who

had completed one and possibly more computer science classes in college. Bachus's

work demonstrated that "novice" students did leam the concurrency material presented.

Bachus's work is the precursor to this experiment.

2.3.2 Teaching Concurrency to Freshman within a CS2 course

The Department of Computer Science at the University of North Carolina at

Charlotte (UNCC) received a two-year grant from the National Science Foundation

(NSF) in 1996 to integrate parallel programming in to the freshman computer science

curriculum [Allen, 1996]. UNCC computer science students take CS1 in the fall semester

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

and CS2 in the spring semester of the same college year. A summary of the CS1 parallel

computing activities at UNCC is as follows:

• "Nothing is covered in the lecture about the theory of parallel computing in

[the] first semester" [Allen, 1996].

• The students read Web-based information on PVM and MPI.

• "Parallel computing is introduced ... through a lab assignment". The object of

the lab assignment is to familiarize the student with the parallel programming

environment and to run a demo program on a multi-workstation environment.

A summary of the CS2 parallel computing activities is as follows:

• During the lecture discussion of algorithms, two perspectives are presented:

- Sequential computation approach

- "Large number of workstations" approach

• Students develop, code, and run a parallel solution to a "divide and conquer"

type problem

Further reading of Allen's paper also discusses other aspects of the NSF funded project;

such as, presenting information by "teleclass" and presentation of expert guest speakers.

UNCC has also developed a "comprehensive parallel programming course". This class is

an elective for seniors.

The important aspects about UNCC's approach to teaching concurrency to

freshman are as follows:

• CS1 students are not taught concurrency and parallelism material, rather, they

are given the opportunity to leam about the parallel processing environment in

lab.

• CS2 students are to compare algorithms that are sequential and algorithms that

take advantage of a "large number of workstations"

• In both cases the teaching of concurrency and parallelism material is not

integrated into the curriculum.

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Kotz [Kotz, 1995] at Dartmouth College implemented a C++ class library named

DAPPLE (for Data-Parallel Programming Library For Education). The DAPPLE library

is "designed to provide the illusion of a data-parallel programming language on a

conventional hardware and with conventional compilers". The DAPPLE library provides

the following:

• Vector classes, such as intVector and floatVector

• Matrix classes, such as intMatrix and floatMatrix

• Parallel IF statement, ifpO

• Matrix slices, parallel operation on slices (defined by (_])

/ / c o m p u t e C = A * B
f o r (i n t r = 0 ; r < P ; r + +)

f o r (i n t c = 0 ; c < R, C++)
C [r] [c] = i n n e r (A [r] [_] , B [] [c]) ;

Kotz wanted students to be able to "experiment with parallel computing concepts without

being distracted by the mechanics of parallel programming." Kotz also looked at other

language implementations that were more task-parallel (such as programming language

COOL [Chandra, 1994]) than data-parallel and rejected them due to complexity.

DAPPLE was originally conceived as an add-on to the Dartmouth CS2 curriculum in

1995. Today, DAPPLE is part of a coordinated CS1, CS2 curriculum [Dartmouth, 1998].

The important aspects about Kotz's approach to teaching parallelism are as

follows:

• Data-parallelism is taught, message passing and shared memory concepts are

not taught

• DAPPLE models only a single thread of control like a sequential language

• DAPPLE performs only selected operations can be applied to vectors of data

"simultaneously"

• DAPPLE is modeling data-parallelism on a "sequential processor budget"

Hence, DAPPLE covers only a small fraction of introductory concurrency and parallelism

concepts and material.

The Washington University in Saint Louis has a two-semester CS1, CS2 sequence

that teaches computer science fundamentals. Both classes are offered fall and spring

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

semesters. The classes “are taught using the object-oriented paradigm using the Java

program m ing language” [Washington, 1998, instructor is Goldman]. In the CS2 class

approximately six consecutive hours of instruction are spent on threads and concurrency

in Java [Washington, 1998, instructor is Kraemer] over a two and one-half week period.

The Java programs are executed on Sun SPARCstation-class computers. The CS2 class

schedule is on the Web at http://www.classes.cec.wustl.edu/~cs 102/Spnng98/calendar.html.

The important aspects about the Washington University approach to teaching

concurrency are as follows:

• Threads are taught as tools; prior and recent sequences of new information in

the CS2 course include graphical user interfaces and event handling

• The course descriptions do not include references to message passing, data-

parallel, or shared memory concepts

• Information on threads and concurrency was held to the end of the course

• Information on threads and concurrency does not appear to be integrated into

other units of the course

Hence, the Washington University CS2 course covers only part of introductory

concurrency and parallelism concepts and material.

2.3.3 Teaching Concurrency To Second-Year Students

Teaching concurrency in the second year of undergraduate school implies one or

more of the following:

• The student has completed at least a CS1 course and perhaps a CS2 course

• Given that a student has completed a CS2 course — the student may have been

exposed to the following:

- Data structures

- Object orientation

- Second programming language

This directly implies that curriculum designers have placed concurrency and parallelism

as a topic that follows these subjects. Concurrency and parallelism is taught to second-

year students at the following universities:

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.classes.cec.wustl.edu/~cs

www.manaraa.com

• University of Wales, Cardiff [Hurley, 1994]

• University of Reading, England [Reading, 1997]

• University of Liverpool, England [Jackson, 1991]

• Queen's University, Belfast [Bustard, 1990]

• Carnegie Mellon University [Fisher, 1991]

• Wake Forest University [John, 1992,1994]

• University of Manchester [Manchester, 1998]

Several of these classes are discussed in the following paragraphs.

The University of Wales at Cardiff has two parallel processing courseware

modules for computer science students:

• An introductory course module for second year students

• An advanced course module for third year students

The utility of solving problems based on concurrent capabilities is demonstrated for

computer science, engineering, electronics, and other disciplines. The computer used for

these modules is a nCUBE2 32-processor computer. The course work is done using the

“C” language with a dialect of function calls. The introductory module addresses the

following topics (the topic titles are Hurley’s):

• The Need For High Performance Computers

• Classification of Parallel Machines

• Fundamentals of Inter-processor Communication

• Shared Memory and Message Passing

• Interconnection Networks

• Parallel Algorithm Construction

• Pipelined Algorithms / Algorithmic Parallelism

• Geometric Parallelism / Partitioned Algorithms

• Asynchronous / Relaxed Parallelism

• Factors That Limit Speedup

The course materials are available on the Web (http://www.cs.cf.ac.uk/Parallel).

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.cs.cf.ac.uk/Parallel

www.manaraa.com

The University of Reading uses different computer languages and computer

platforms for instruction of first-year and second-year students. First-year students are

exposed to the following programming courses:

• Logic of Computer Science

• Event Driven Programming

• Introductory Computing

These courses are taught using "Delphi, a visual software environment from Borland

using a Pascal-like programming language (Object Pascal) originally invented by

Professor Niklaus Wirth of ETH Zurich." The Borland product runs on PCs. Prior to

October 1997 the introductory computer language was Modula-2. The second-year

computer science students are exposed to the following courses that have programming

associated with them:

• Operating Systems

• Computer Architecture

• Software Engineering

The architecture course programming is done on a Motorola MC68000 processor. In the

other courses programming is done on a Unix based SUN computer. The concurrency

and parallelism topics introduced in the Operating Systems course include:

• Synchronization of processes

• Interprocess communication by message passing

• Multi-tasking systems

The University of Reading school year includes three terms: autumn, lent, and

summer. Although the summer term is technically part of the first year, it is considered

second-year for the purposes of this document. Students attend nine "terms" in college to

obtain a Bachelor of Science degree over three years.

The University of Reading is also a mirror site for Designing and Building

Parallel Programs (Online) [Foster, 1997]. The materials at this Web site are used by the

students for undergraduate and graduate work [see http://www.cs.rdg.ac.uk/dbDD/text/node l .html

for a table of contents for the text].

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.cs.rdg.ac.uk/dbDD/text/node

www.manaraa.com

Jackson at the University of Liverpool [Jackson, 1991] addressed teaching

concurrency to undergraduates by creating a mini-course which was a "self-contained

unit". The material was presented along with a second-year unit on "systems software —

the major portion of which is a detailed study of operating systems." The language

Jackson chose for the mini-course was Ada. Jackson's mini-course contained five

lectures:

• Process concepts — process definition, process execution, context switch

• Concurrency — Ada tasks, synchronization

• Problems of parallelism — indeterminacy, mutual exclusion, producer-

consumer

• Advanced programming — like protected variables, bounded buffer

• Task termination and deadlock

Jackson described the ease with which students could understand simple problems and

then described that it was "surprising how many students have difficulty in getting the

synchronization correct."

Queen’s University of Belfast [Queens, 1998] has a complete course titled

“Parallel Programming Systems”. This course is available to second year students. The

course content for this course is as follows:

• Parallel program design

• High level representation of parallelism

• Software for parallel system

• Cooperative and communicating processes

Bustard is credited as the source of this information. CAR Hoare was the Computer

Science Department Head from 1968 to 1977; his presence assisted “the Department [in

acquiring] an enviable international reputation, particularly in the areas of programming

methodology and programming language design and implementation.” The Introductory

Computer Programming I course is taught in Modula-2.

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Carnegie Mellon University has a course titled "Programming Languages Design and

Processing" that presents several paradigms:

• Imperative

• Functional

• Logic

• Concurrent programming

The course is setup to show how "different design goals can lead to radically different

languages and models of computation". The course is open to second year students and

up.

2.3.4 Teaching Concurrency To Third-Year and Fourth-Year Students

Several universities first present concurrency and parallelism to their third and

fourth-year students. Many universities introduce concurrency and parallelism as part of

the operating systems course; some of these universities include the following:

• University of Indiana [Indiana, 1998]

• Villanova University [Villanova, 1998]

• Rensselaer Polytechnic Institute [Rensselaer, 1998]

• Brown University [Brown, 1998]

• George Mason University [Mason, 1998]

• Dartmouth [Dartmouth, 1998]

Lewis [Lewis, 1997] at Villanova recently completed an introductory programming text

using the language Java. Villanova started using the Lewis text for its CS1 course in

October 1997. The text includes material on threads and synchronization. However, this

information is under the topic "Advanced Flow of Control" (Chapter 14) and is not

present in the CS1 class. Chapter 14 is one of the closing chapters of the text.

Numerous other university offer concurrency and parallelism course work to third

and fourth-year students (not directly associated with an operating systems course):

• Blackburn College [Meredith, 1992]

• Illinois State University [Hartman, 1991]

• Florida International University [Berk, 1996]

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

• University of Houston — Clear Lake [Yue, 1994]

• University of Pennsylvania [Penn, 1998]

There is a separate class on the subject titled "Introduction to Parallel Processing" at the

University of Pennsylvania. Also, the Carnegie Mellon University course titled

"Programming Languages Design and Processing" is available to third and fourth-year

students.

Some universities offer concurrency and real-time processing course work to

fourth-year and graduate students (not directly associated with an operating system

course):

• George Mason University — Course CS621, Software Architecture / Design

• McMaster University — Course CS-730, Real-Time Systems [McMaster,

1999]

• Millersville University — Course CS360, Real-Time Systems Engineering

[Millersville, 1999]

• Washington University — Course CS520A, Intelligent Real-Time Systems

[Washington, 1999]

2.4 Unique Approach to Concurrency — Sisal

The Computer Research Group at Lawrence Livermore National Laboratory

developed and supports a programming language called Sisal [Sisal, 1996]. The Sisal

language is based on mathematical foundations. The Sisal language supports functional

parallel programming using data-parallelism. The language was designed to use

mathematical semantic rules to guarantee the following:

"Sisal programs are determinate, regardless of platform or environment."

The language was designed, such that, "race-conditions" and time-dependent behavior are

detected by the compiler and prevented. The syntax of the Sisal language has a

distinctive mathematical structure. The language manual contains the following

acknowledgement: "if you have any experience programming in languages like Fortran,

Cobol, C, or Pascal, there is a change in mind-set necessary in learning to use it." There

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

is a paradigm shift because the Sisal language deviates from the imperative programming

paradigm. An example of the distinctive syntax of the language is given below:

f o r I i n 1 , n u m _ c o u n t e r s
n e w _ c o u n t := c o u n t e r s [I] + i n c r e m e n t [I]

r e t u r n s v a l u e o f sum c o u n t e r s (I)
v a l u e o f sum n e w _ c o u n t {I)
a r r a y o f n e w _ c o u n t

e n d f o r

This example demonstrates aggregation (can be done in parallel) and reduction (must be

done sequentially) in the same loop.

Lawrence Livermore National Laboratory develops and maintains software, in

particular concurrent software. The concept behind Sisal is to develop a programming

language that supports parallelism and removes the details of parallelism from "the

shoulders of the programmer". This implies that the Lawrence Livermore National

Laboratory approach to parallel programming is to require the programmer to not leam

the concurrent paradigm. As a result, Sisal has limited applicability within the concurrent

paradigm.

2.5 Concurrency as a Paradigm and Teaching Concurrency Today

There is no common answer across universities as to the when and how to

introduce concurrency into the undergraduate curriculum. There is evidence that some

universities are introducing concurrency into the curriculum earlier in the sequence of

undergraduate computer science courses. The NSF is funding research into how to

introduce concurrency earlier in the computer science curriculum.

Toll [Toll, 1995] in his paper "Decision Points in the Introduction of Parallel

Processing Into the Undergraduate Curriculum" raised numerous curriculum level

questions. A subset of Toll's questions is as follows:

• "How early should parallel processing be introduced?"

• "Should parallel processing be taught in one course or in several?"

• "Should the languages used for programming be extensions of known

languages or new languages?"

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

In order to answer some of Toll questions, some basic goals need to be set forth.

Introductory computer science students should be taught to reach these goals at the

earliest possible time:

• Leam to think in the classical Von Neumann (sequential) paradigm

• Leam to think in the concurrent paradigm (Toll states this as "leam to think in

parallel")

• Be able to recognize a simple sequential algorithms

• Be able to recognize a simple concurrent algorithms (Tolls states this as

"understand some standard parallel algorithms")

• Leam to recognize that sequential (as a paradigm) is a subset of the concurrent

paradigm

• Leam certain basic concepts within the concurrent paradigm (Toll states this

as "understand different models of parallelism")

Examples of some of the basic concurrent paradigm concepts are as follows:

• Shared memory (Toll planned to include in a future CS2 class)

• Message passing (Toll planned to include in a future CS2 class)

• Non-determinism

• Aliveness

• Deadlock

• Synchronous activity

• Asynchronous activity

• Simple machine architecture (Toll planned to teach SIMD)

The amount of new information presented to students in this experiment on concurrency

can be integrated into the existing CSl class over seven weeks. One objective of this

experiment was to demonstrate that simple, concurrent concepts and programming can be

integrated into an existing CSl course. The results of this experiment will demonstrate

that the answer to Toll's first question is that parallel processing concepts can be, and

should be, introduced in CS1.

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

The answer to Toll's third question is curriculum dependent. The CSl and CS2

courses at George Washington University are taught using the programming language

Ada. Since Ada includes concurrency using tasks; there is no need for either extensions

of existing programming languages or new programming languages to introduce

concurrency into the beginning of the computer science curriculum.

The answer to Toll's second question would be to integrate concurrency and

parallelism across the computer science curriculum. By integrating only introductory

concurrent paradigm material into the CSl course, there will be additional concurrency

information not presented in the course. This additional concurrency information should

be presented in a later course or courses.

Toll [Toll, 1997] raises a new set of questions in his paper "Parallel Processing

Integration in the Computer Science Curriculum: A Question of Balance". Toll is the

principle investigator for a NSF grant research project at Taylor University for

"Integrating Parallel Processing as a Tool Throughout the Undergraduate Computer

Science Curriculum". Toll's questions are posed as alternatives about teaching

concurrency and parallelism; a subset of his questions is:

• "Concept versus Programming"

• "Study Parallel Processing versus Use as a Tool"

• "Simulators versus Hardware"

This experiment introduces students to concurrency concepts and includes programming

assignments. The answers to these questions are as follows:

• Both concepts and programming are included in teaching the concurrency

material

• Parallel processing concepts are taught. Concurrency is a way to model and

solve problems. Concurrency is not taught as a tool to solve some other type

of problem.

• Neither — students are taught concurrency concepts; the concepts are not tied

to a specific hardware or simulator configuration

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

2.6 Common Introductory Concurrency Materials

This subsection presents commonly used introductory concurrency materials. The

materials are not presented in the order that they would be in a class. Material

presentation order is addressed in Section 4.

2.6.1 Concepts in Use

Many concurrency courses include Flynn's models of computation. Flynn defines

two information streams [Hurley, 1994]:

• Stream of instructions (is the algorithm) that tells the processor what to do

• Stream of data (is the input) which are processed by the stream of instructions

Four classes of computer architectures that Flynn defined are as follows:

• SISD - Single Instruction Stream, Single Data Stream

• MISD — Multiple Instruction Stream, Single Data Stream

• SIMD — Single Instruction Stream, Multiple Data Stream

• MIMD — Multiple Instruction Stream, Multiple Data Stream

In addition to the four architectures above, Flynn included a "pseudo-machine"

architecture: SPMD — Single Program Multiple Data. Flynn's taxonomy was referenced

numerous times; some of the references included Jackson, 1991; Fisher, 1991; Hartman,

1991; Olszewski, 1993; Hurley, 1994; Duckworth, 1994; Harlan, 1995; Kotz, 1995;

Schaller, 1995; Toll, 1995; and Manchester, 1998.

In the SIMD architecture all processors are performing the same instruction at any

given instant of time. SIMD is an example of synchronous parallelism. SPMD is

asynchronous parallelism where each independent processor is running the same

program. The SPMD concept can be implemented on a single MIMD computer or on a

collection of SISD computers. SPMD is not a hardware architecture.

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Many concurrency courses addressed one or more of the four concurrent

programming models [from Fisher, 1991]:

• Message passing (MP)

• Shared memory (SM)

• Data parallel (DP)

• Extraction of parallelism (XP)

Shared memory and message passing are commonly discussed regarding interprocessor

communications. One or more of these concurrent programming models were referenced

numerous times; some of the references included Hartman, 1991; Fisher, 1991;

McDonald, 1992; Kitchen, 1992; Langan, 1993; Hartman, 1993; Kotz, 1995; Anrow,

1995; Toll, 1995; Elenbogen, 1996; Berk, 1996; Ben-Ari, 1996; and Ashton, 1997.

In addition to shared memory, there were many references to the four subclasses

of shared memory access (from Jaja, 1992, page 11) in the parallel random-access

machine (PRAM) model:

• EREW — Exclusive read, exclusive write shared memory access

• CREW ~ Concurrent read, exclusive write shared memory access

• ERCW -- Exclusive read, concurrent write shared memory access

• CRCW ~ Concurrent read, concurrent write shared memory access

Some of the references included Aki, 1989; Cormen, 1990; Fisher, 1991; Jaja, 1992; and

Hurley, 1994.

In the paragraphs above, the underlying concept is that there is a continuum of

parallelism from control-only to data-only parallelism [Hummel, 1997]:

• Control-only parallelism — This is concurrency involving heterogeneous (or

dissimilar) "heavy-weight" processes (each process is executing different

executables)

• Data-only parallelism — This is parallelism (possibly in a numeric application)

where homogenous "light-weight" threads are co-operating to solve a single

problem

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Fox and Furmanski put forth a new classification of the various forms of

concurrency based on a Web and Java language view of concurrent and parallel

programming [Fox, 1997, page 415]:

• Data parallelism -- "parallelism over what is large in the problem", examples

included the following:

- "Natural parallelism over the particles in a [molecular] computation

- Parallelism over several possible trails in the Sieve algorithm as the

'data' for data parallelism

- Data parallelism tends to be 'massive' because computations are time

consuming over what is 'large' in the problem"

• Functional parallelism — typical thread parallelism, examples included the

following:

- The overlap of computation and communication

- Multiple computation tasks executing concurrently

- Units of concurrency are modest grain size (larger than a few

instructions scheduled by a compiler and smaller than an application)

• Object parallelism — "the type of problem solved by discrete event simulators"

- "This is quite natural for C++ and Java where the latter can use the

applet mechanism to portably represent objects"

• Metaproblems — functional concurrency with Iarge-grain size components

Fox characterizes metaproblems as problems (applications) with modest amounts of

large-grain concurrency. Each concurrency grain in metaproblems is much more self-

contained than in functional parallelism. "[M]eta problems are naturally implemented in

a distributed (Web) environment."

2.6.2 Languages in Use

Miller [Miller, 1994] reports that courses with parallel processing content are

beginning to appear at the undergraduate level. Of the 63 colleges and universities that

responded to Miller's request for information and provided a specific course count (at the

undergraduate level), there are 73 courses with parallel processing content offered (1.16

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

course per institution). Since an undergraduate student will be exposed to about one

course, the selection of tools and language for that course will indicate information about

what topic areas in parallel processing are taught.

Brilliant [Brilliant, 1996] documents that according to "Dick Reid at Michigan

State" that the programming language Ada is the most popular alternative introductory

programming language to Pascal. Further Brilliant states that "[p]robably the single

language that best meets the pedagogical needs of computer science education is Ada".

Ben-Ari [Ben-Ari, 1996] describes in the paper "Using Inheritance To Implement

Concurrency" how to simulate the concurrent primitive of other concurrent languages

(such as occam, Joyce, and Linda). Ben-Ari uses Ada to teach "concurrency primitives

that are not directly supported by the language" by simulation.

Yue [Yue, 1994] at the University of Houston - Clear Lake teaches an

undergraduate course in concurrent programming using Ada that is oriented to seniors.

The course uses a software orientation and does not address parallel hardware

architectures directly. The course also emphasizes the language Linda because "it is

based on a asynchronous communication model, as opposed to the synchronous

communication model in Ada."

Many universities have chosen a base language for their computer science

curriculum that does not support concurrency and parallelism. The programming

languages Pascal, C, C++, and Fortran do not support concurrency and parallelism.

These universities need to "add" or "extend" concurrency to their existing programming

language. These universities concurrency classes are taught using extended languages

that "add" concurrency to an already existing language. Examples of these extended

languages include the following:

• Message passing libraries:

- Parallel Virtual Machine (PVM)

- Message Passing Interface Standard (MPI)

• High Performance Fortran (HPF)

Message passing is one of the most effective and widely used communication paradigms

in parallel computing.

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

For universities not using Ada as the base language, "instructors of courses in

parallel computing necessarily discussed the use and development o f parallel software in

the context of a vendor's proprietary software or software being developed by a research

group, or, even worse, simply left the problem of using and developing parallel software

as 'exercises' for the students" [Pacheco, 1977]. The Message Passing Interface Standard

provides instructors with a standardized library of subprograms that can be called from

the languages C, C++, and Fortran 77 (and later).

The core of the MPI concept is a pair of send and receive routines that allow

processes to communicate data. The C language calls to the MPI routines are as follows:

• I n t M P I_S e nd (v o i d * m e s s a g e , i n t c o u n t , M P I _ D a t a t y p e

d a t a t y p e , i n t d e s t i n a t i o n , i n t t a g , MPI_Comm comm);

• I n t M PI_Recv (v o i d * m e s s a g e , i n t c o u n t , M P I _ D a t a t y p e

d a t a t y p e , i n t s o u r c e , i n t t a g , MPI_Comm comm, M P I _ S t a t u s *

s t a t u s) ;

The tag parameter is an integer value used to uniquely identify a message. The tag

concept allows a sending process to repeatedly send the same message; each message is

differentiated by a unique tag number. The source and destination parameters are integer

values used to identify a process by its number (similar to the Unix process ID number,

"pid"). MPI supports user-defined datatypes; these datatypes are simply the combination

of an address and displacement (or sequence of displacements). This allows multiple

pieces of information to be included in a single message. MPI was developed in an open

forum. MPI has the following advantages:

• Teaches message passing

• Uses the existing compiler and a library extension (for MPI)

• MPI libraries can be recompiled (hardware independence)

• MPI libraries exist for the languages C and Fortran

MPI is referenced by the following authors: Ercal, 1996; Allen, 1997; and Pacheco, 1997.

High Performance Fortran (HPF) provides the following parallel processing

support [NPAC, 1994]:

• Fine-grained data parallelism, using DO loops and other constructs

• Critical sections (within loops)
33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

• Multiple processes that communicate using the following mechanisms:

- Shared data abstraction (shared memory controlled by a monitor

mechanism)

- Virtual channels / files

- Message passing (using MPI)

HPF was originally written for the purpose of creating data-parallel programs. The three

items under the last bullet were added after HPF was first written.

HPF has compiler directive words (pragmas) that affect the compiler's

interpretation of the DO loop:

• Independent — Fortran statements following "independent" can be execute in

parallel

• Reduction — Fortran statements following "reduction" must be executed

sequentially

The directive word independent represents a fan-out directive. The directive word

reduction represents a fan-in directive.

HPF's virtual file mechanism supports user defined relationships between "reader"

and "writer" processes. Each of the following parameter lists is valid for open:

• mode=virtual, writers=single, readers=single

• mode=virtual, writers=single, readers=multiple

• mode=virtuai, writers=multiple, readers=single

• mode=virtual, writers=multiple, readers=multiple

Read operations associated with virtual files normally block the reading processes) until

data is available.

Other universities chose specialty languages that highlight concurrency and

parallelism. In this case the base language for their computer science curriculum need not

support concurrency and parallelism. Examples of these specialty languages include the

following:

• Joyce and Linda

• Cooperating Sequential Processes (CSP)

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

The Joyce and Linda programming language [McDonald, 1992] has its origins in

two programming languages:

• Linda parallel programming language

• Joyce parallel programming language

The Linda programming language was developed by Gelemter in the 1980s as a method

of inserting a parallel programming capability into a sequential language such as C,

Modula-II, and Pascal. Linda uses a concept called a tuple-space that is shared among all

processes. Tuples provide two functions:

• Hold elements of a data structure

• Synchronize access to the tuple-space across processes

The arity of a tuple defines the number of fields in the tuple. Tuples are strictly typed

objects. The Joyce programming language supports concurrent processes called agents.

Agents are not allowed to share variables. Joyce uses a Pascal-like syntax. The

Joyce/Linda programming language includes the concurrent processes support from

Joyce and the tuple-space concept from Linda. In Joyce/Linda the tuple-space is the only

means of processes communicating. The Joyce/Linda language is used at the University

of Western Australia.

The University of Western Australia [McDonald, 1997] is currently working with

PVM. PVM provides a "simple environment offering interprocess communication

between heterogeneous systems". McDonald and Kazemi have developed PVM library

modifications to support multiple students using a single virtual machine.

The University of Michigan at Dearborn uses the Joyce/Linda language for

computer science lab assignments that explore "various parallel and distributed

architectures and paradigms" [Elenbogen, 1996]. The University of Michigan at

Dearborn uses the Joyce/Linda language in four undergraduate courses: algorithms, data

structures, computer networks, and operating systems.

Although the Communicating Sequential Processes (CSP) language was

developed in the 1970s, the language is still used and studied today. Olszewski

[Olszewski, 1993] describes a "CSP Laboratory" at the University o f New South Wales

for the study of concepts pertaining to "a formal basis of parallel programming". The

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CSP language constructs are translated into the programming language Miranda. Olsson

[Olsson, 1995] describes a CSP language preprocessor that converts CSP notation into

the equivalent program written in the SR. programming language. The CSP language

preprocessor was written at the University of California, Davis. These CSP language

tools are used in advance undergraduate and graduate courses in operating systems and

concurrency programming courses.

2.7 Teaching CSl Students

Section 2 of this document is constrained by dissertation protocol to be a literature

search only. As such, this subsection presents the literature on teaching CSl; the

implementation of the items presented here is in Section 3 as additional information about

the experiment.

Reid [Reid, 1994] at Michigan State University has developed a set of window

based objects. One of these objects is a droid with 16 programmable control points. The

control points are representative of joints in the human body. Students write a program

that send messages to the droid object that controls a sequence of droid movements. Two

of the goals of the program are to demonstrate the following:

• Use of loops and nested loops

• Existence of starting conditions and ending conditions

The setting of this exercise is shifted to the classroom in this experiment. The object of

the exercise is to allow the students to apply their knowledge of loops to a new and

concrete situation [Howard, 1996].

Liu [Liu, 1996] recommends that instructors "consider a remedial introductory

course for incoming students who are less prepared". This is proposed as one of several

ways to help retain female computer science students. The remedial instruction can be

given at any time during the course; however, student confidence is a factor. Liu stated

that "resources to assist students who do not do well in large class settings" were needed.

The remedial instruction should have a "mentoring" style.

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

As an aid in organizing and learning the material, students were taught the basic

elements of David Ausubel's learning theory [Ausubel, 1970]. Students are introduced to

Ausubel's advanced organizer concept and encouraged to build their own organizer.

Ausubel’s theory of learning fits into the traditional pedagogy of instruction.

Ausubel’s theory of learning addresses the following areas:

• Focus on inputs

- Inputs are important to the learning process

- Emphasis is on well organized material

• Mature learners (such as adults)

• Focus on cognitive demand (organization of material to reduce cognitive

demand)

• Meaningfulness of new ideas (to the learner)

Ausubel's advanced organizer concept is a schema (a mental structure) by which a student

can organize newly acquired information. This schema is instilled into the student with

advance preparation and repetition. Intrinsic to Ausubel’s theory is that well organized

material leads to better reception by the student. According to Ausubel, "the principal

function of the organizer is to bridge the gap between what the learner already knows and

what he needs to know before he can successfully leam the task at hand" [Ausubel,

1970]. Using an organizer is a technique in facilitating the student's "differential

analysis" between the information the student already knows and the information to be

assimilated. Thus, the schema is the framework for the organization and recall of

information. The schema provides the framework by which students accommodate and

categorize new information (new ideas are hooked to existing knowledge), and recall and

capture existing knowledge. The advance organizer technique is useful as a schema for

storing, ordering, referencing, and retrieving technical information [Barsalou, 1992].

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

3 EXPERIMENTAL METHOD

This section presents an overview of the methodology used in the experiment and

additional information. This section discusses the following materials in the urder listed:

• Overview of the experiment and subject groups

• Choices not available in the experiment

• Constants in the experiment

• Types of information collected

• Experimental design

• Validity threats and their prevention

• Analysis tools

• Additional information

The last subsection is included to provide continuity with Section 2.7, Teaching CS1

Students. The last subsection documents additional items provided to all classes.

3.1 Overview Of The Experiment

This subsection of the document presents an overview of the experiment and

describes how the class schedules are organized.

The programming language used by the CSci 51 students in the class is Ada 95.

Ada 95 is the programming language used in the George Washington University (GWU)

CS1 course CSci 51, Introduction to Computing. There are three groups of subjects in

this experiment; they are as follows:

• Control group -- the students in the Fall 1997 CSci 51 class. These students

received the same materials as taught by Feldman. In addition, these students

received supplemental information to enhance the materials as taught by

Feldman.

• Treatment group one -- the students in the Spring 1998 CSci 51 class. These

students received both the traditional and experimental (concurrency and

parallelism) materials.

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

• Treatment group two -- the students in the Fall 1998 CSci 51 class. These

students received both the traditional and experimental (concurrency and

parallelism) materials.

The CSci 51 class is divided into two time periods:

• Period one — the first eight weeks of the semester

• Period two — the second eight weeks of the semester

During period one both the control group and the treatment groups received the same

instructional materials. A list of the many items that remained constant during period one

of the experiment are presented later in this section. The planned similarity of instruction

and materials during period one allows a comparison of the three groups. Thus, the

performance of the groups (control and both treatment) during the first period is

compared. For example, common folklore, as observed by the teaching assistant, says

that the fall classes in CSci 51 do better (on average) than the spring classes in CSci 51.

The fall classes, as observed by Feldman, are approximately one-half the size of the

spring classes. By having a period of direct comparison of the three groups on the same

material, differences between the three groups can be identified and normalized as

necessary; such that, differences in the three groups are compensated in comparing

student performance during period two.

During period two, the control group continued to receive the traditional lectures

and materials, while the treatment groups also received the experimental lectures and

materials (concurrency and parallelism). The treatment groups materials differed from

the control group in the following areas:

• Different instructional materials were presented during the second eight week

period — the treatment groups received instruction in concurrency and

parallelism

• Different lecture schedules were maintained

• Different projects were assigned — the treatment group projects were varied to

contain concurrency and parallelism programming exercises

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

• Different final exam reviews were presented

• Different final examinations were given (however, six very similar sequential

questions were given to each group)

3.2 Choices Not Available In The Experiment

The following items could not be controlled in the experiment (they resulted due

to outside factors):

• Number of students in each group (class size) — students elect to register for

the class based on their own schedules

• Time of day for lecture ~ lecture times were chosen by Mr. Rowan,

administrator for Electrical Engineering / Computer Science (EECS)

• Time of day for recitation — recitation times were chosen by Mr. Rowan

• Computer facilities used — the engineering school computer facilities were

predetermined to be the Sun SparcServer Unix computer, called "Felix"

• Classroom location and size — these were chosen by the university

administration

• Use of Ada 95 language ~ the language Ada 95 is the introductory

programming language in the engineering school for computer science and

computer engineering students

• Programming experience, or lack thereof, in the students’ background

3.3 Constants In The Experiment

The following items are maintained constant throughout the experiment:

• Same instructor employed

• Same teaching assistant employed

• Same grading standard used

• Same computer facilities used

• Same opportunity for electronic mail interaction with the instructor

• Same opportunity for electronic mail interaction with the teaching assistant

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

In addition, during period one (the first eight weeks) many more items were maintained

constant for both the control group and the treatment groups:

• Same lectures were presented

• Same instructional material was presented

• Same lecture schedule was maintained

• Same projects were assigned (different geometric shapes and numerical values

were used)

• Same mid-term review was presented (different numerical values were used)

• Similar midterm examinations were given (questions were in different order

and numerical values were changed)

3.4 Types Of Information Collected

The purpose of this subsection is to associate the data collected with the

hypotheses and findings. The following types of information were collected from all

groups (control and treatment) for the experiment:

• Mid-term exams -- a copy of each exam was kept

• Final exams -- the original of each final exam was kept

• Grades of each individual problem given on a mid-term or final exam

• Selected homework projects (originals)

• Grades of every homework project including total points earned, penalty for

lateness, and actual score

• All electronic mail correspondence — both messages received and replies

• Student surveys collected at the beginning of each class

• A complete record of every compilation and link done by a student including

all source code and time of day information

The first question to be answered is as follows — are there significant differences

in the three groups? All the groups received the same instruction during period one of the

semester (first eight weeks). This question is answered in Section 5, Results, of the

document. The answer is based on the two separate comparisons: the classroom part of

the mid-term exam scores and project scores (Projects 2 ,3 ,4 , and 5 were used).

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

The subject area of the first hypothesis is as follows — does teaching concurrency

to novice programmers reduce their test performance on sequential material? AH the

groups received six final exam questions that were sequential in nature and were very

similar or nearly identical. The answer is based on the comparison of the final exam

scores for these six sequential questions given to all three groups.

The subject area of the second hypothesis is as follows -- after instruction in

concurrency, are novice programmers more / less able to solve concurrent questions than

sequential questions? The answer is based on a comparison of the treatment groups'

concurrency final exam scores versus the treatment groups' sequential final exam scores.

Since the point value of the sequential questions is different than the point value of the

concurrency final exam scores, the total points of the sequential questions (57 points) is

normalized to the total points of the concurrency questions (41 points).

The subject area of the third hypothesis is as follows — are novice programmers

less able to use concurrent methods than sequential methods on "large" projects? The last

project in the course, Project 9, is the large project. The control group students used

sequential methods to do the project. The treatment group students used concurrency

methods to do the project. The answer is based on a comparison of the control group and

treatment group scores on Project 9.

In addition, the compilation data collected is used as a "sanity check" on the level

of effort for Project 9, as measured by the number of compiles. During period one of the

semester, all groups performed five projects (these projects are very similar or nearly

identical from group to group). The following ratio is then computed on a per student

basis:

Number of compiles for Project 9

Number of compiles for Projects 2 ,3 ,4 , and 5

A comparison of the control group's ratio to each treatment group's ratio was made. The

comparison of the groups' ratios provided a measure of the level of effort required of the

students in completing the last project, Project 9. Given that significant differences in the

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

groups' ratios are not found, then Project 9 experimental results are less subject to attack

due to the relative level of effort, as measured by the number of compiles.

The subject area of the "findings" research is as follows — an examination of

differences in compile error profiles of students using concurrent and sequential methods

on "large" projects. The profile examined is the distinct error ratio (DER). DER is the

ratio of total occurrences of compilation errors to number of distinct errors. The DER is

examined for the last project, Project 9. As previously stated, compilation and link data

were collected. Compressing all the variations in error messages into a smaller number of

distinct error messages is not an exact science. The method used to reduce the total

variation of error and warning messages is as follows:

• Replace variable names with a representative symbol (such as "token")

• Replace numbers with a representative symbol (such as the value "99")

Thus, the error message ""class_sum" is undefined’ is translated to ""token" is

undefined'. The error message ""=" should be remains unchanged.

Approximately 450 distinct error messages (both sequential and concurrent) were found.

Approximately 20 distinct warning messages were found.

Student surveys were collected from the students in each group. A few students

refused to provide survey information and were excluded from the experiment --

background information on the student is not available. The data in the surveys along

with other information (refer to Section 5, Results) were used to determine which

students were novices, as defined by the experiment. Also, survey data were used as

input to correlation studies. For example, the correlation between college year and

concurrency question test scores was examined.

Although not necessary to the experiment, the following additional information

can be derived from the compilation and link data collected:

• Number of compiles to successful compilation

• Number of successful compiles to project completion

• Number of compiles necessary to avoid a specific error (by syntax error type)

Program executions were not collected due to the certainty of infinite loop output being

recorded to disk and crashing the engineering school computer.

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

The students in both the control and treatment groups were told the following

about the recording of every compilation and link done by the students:

• The instructor was collecting information to make changes in the course

• The compilation and link information was not used for grading at any time

• Information collected would be used to make changes in the information

presented

• Students programs were automatically backed-up every time they compiled, a

benefit used on occasion by students

3.5 Experimental Design

The design methodology for this experiment is called "static-group comparison

design". This design methodology is part of a major classification of experimental

designs called pseudoexperimental designs. Pseudoexperimental designs are often used

because of the experimental resources available. The essence of the static-group

comparison design is as follows:

• There are two or more separate and distinct groups of subjects

• The subjects in each group are self selecting — in this experiment each student

has chosen to enroll in the course

• Random selection of subjects is not feasible — again the student chose to

enroll during a given semester

Traditional discussions of this design methodology imply that both the control and

treatments groups are studied at the same time. In this experiment, the groups are studied

sequentially (one group at a time). The engineering school enrollment supports only a

single CS1 class per semester. There are several validity threats to an experiment of this

design. They are presented in the next subsection.

In a static-group comparison design experiment the treatment group is exposed to

the treatment and the control group is not exposed. Thus, the experimental variable is the

exposure or non-exposure to the treatment (the treatment is the independent variable).

The observed results are the dependent variables (for example, the sequential question

final exam scores).

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

The statistical tests used in the experiment are described in Appendix M,

Statistical Tests. However, some general background on how the statistical tests are

applied is appropriate to present here. The size of the control group was 24 students. The

sizes of the treatment groups were 52 and 21 students, respectively. At these group sizes

normality test results are inaccurate [Hintze, 1999]. Thus, non-parametric statistical tests

are appropriate (normality is not an assumption of these statistical tests).

Many of the statistical tests used compare the distribution of three groups; the

three group distribution comparisons done were as follows:

• Mid-term exam scores

• Project 2, 3,4, and 5 scores together

• Sequential question final exam scores

• Project 9 scores

• Compilation ratios (Project 9 compilations divided by Project 2, 3, 4, and 5

compilations)

• Distinct Error Ratio

The BCruskal-Wallis One-Way ANOVA on Ranks test [Hintze, 1999] is an appropriate

non-parametric test for comparing three groups for significant differences.

The analysis associated with the second hypothesis compares an individual

treatment group's concurrency final exam scores versus the treatment group's sequential

final exam scores. This comparison requires the analysis of two distributions for

significant differences. The Mann-Whitney U test [Huck, 1974] [Hintze, 1999] is an

appropriate non-parametric test for comparing two distributions for significant

differences.

The Kruskal-Wallis One-Way ANOVA on Ranks test and the Mann-Whitney U

test include the following assumption: the data groups have equal variances. The

Modified-Levene Equal-Variance test [Hintze, 1999] is an appropriate non-parametric

test for comparing the variance of two or three distributions. In the event that the data

groups do not pass an equality of variance test (Modified-Levene), the non-parametric

Kolmogorov-Smirov test is used. This test is used to detect a significant difference in

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

two samples or distributions. Restated, the Kolmogorov-Smirov test computes the

probability that two samples are from the same distribution.

3.6 Validity Threats and Their Prevention

There are several validity threats to a static-group comparison design experiment

[Huck, 1974]. This design methodology is called pseudoexperimental because the

methodology lacks built-in controls to deal with threats. These validity threats include

the following:

• Self selection of subjects

• Mortality

• Maturation

• History

The self selection of subjects is the greatest threat. This is because each subject group

will be different, possibly very different. It is a given in this experiment that each group

is going to be different. However, there are techniques that minimize the impact of these

differences. One of the simplest and most effective techniques is to calibrate each group

against the others by providing identical treatments and observing the result. This is

exactly what was done during the first eight weeks of the semester. All groups received

the same material during the first eight weeks of the course. The relative performance of

each group can be calibrated against the same measure. Thus, each group's performance

during the period when different treatments are applied, the second eight weeks in the

course, could be adjusted for group differences.

Mortality deals with the loss of subjects from any of the groups. The experiment

can not be adjusted to defend against mortality — students leaving the group (either by

withdrawal or change of status, such as audit). Enough students remained in each class

for a statistically valid sample size to exist at the end of the semester. Students are

required to take and successfully complete CSci 51 to advance to the other computer

science courses. This alone "appears" to provide sufficient motivation for students to

complete the course (and provide a statistically valid sample size). However, it is

important to determine the underlying causes of mortality. Using the control group as an

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

example, five students changed their status. The students' rationales for their status

changes were as follows:

• Student A -- this student was told by her father that her major in college was

to be computer science and that she would attend an American university.

This student expressed interest in art (particularly drawing) and was not

willing to spend the time she felt was necessary. The student withdrew as

soon as her father gave permission.

• Student B -- this student became ill in the sixth week of class and could not

continue.

• Student C — this student was an employee of the university and newly

married. The student realized that the course included homework and chose

not to continue the course.

• Student D — this student has a bachelor degree from another university and

was an employee of the university. The student realized she was not willing

to spend the time necessary to complete many of the homework assignments

on time and changed her status to audit.

• Student E ~ this student received a low mid-term grade, "D", and chose not to

risk an average grade for the class. The student withdrew. The student's

major was computer science. To attend the graduate school of his choice, the

student claimed that all his grades must be "A" or "B".

Maturation deals with the subjects growing maturity (both psychological and

biological). The impact of this threat is that any one group may be more mature than the

another group. This could impact the experiment’s results. One of the simplest and most

effective techniques is to calibrate each group against the others by providing identical

treatments and observing the result. This was done as part of the experiment.

History deals with external non-experimental events affecting a subject's

performance over the period of the experiment. A significant emotional event will impact

a subject's performance. For example, during the control group phase, the grandmother

of a student died. This student was excused from the course for three class periods. The

student's makeup work was not graded. The overall work was not affected. The

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

important aspect of history threats to an experiment is that if a threat goes unobserved, a

subject's performance is affected by an influence outside the experiment and may be

attributed to the experimental treatment.

In addition to the above external validity threats, another threat that can be

controlled within the experiment is instrumentation. Instrumentation deals with the

problems evaluating dependent variables. The instruments in this experiment include the

instructor and the graders. For example, differences between the control group and the

experimental groups could be attributed to the instructor and graders unless mechanisms

were carefully built-in to the conduct of the experiment. The mechanisms are presented

in Section 5, Results.

3.7 Analysis Tools

There were two tools developed for this experiment:

• Compilation-recording tool

• Compilation analysis tool

The compilation-recording tool is a Unix shell script. The script records the

compilation listing file (such as "*.lsb" files for Ada 95) along with date and time

information. The information is recorded on a "userid" (student account) basis. Thus, a

complete history of each student's compilation information is recorded. An entry level

computer science student does not possess the skills necessary to avoid or bypass the

recording process. Although student compilation information is recorded, students do not

have read access to the directories that contain their compilation histories. Students are

required to submit all project work using the SEAS computer Felix. This means that

students must compile, link, execute, and print their project work on the computer named

Felix in order to submit their projects. If a student chooses to develop part of the project

homework on another computer, the student is required to provide very simple progress

reports by electronic mail. Only two students (one in the control group and one in the

Fall 1998 treatment group) chose to do this; and terminated the activity within a week.

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

This tool also generates electronic mail to the instructor when a new student starts using

the computer and when recording directory problems occur. The recorded information is

captured weekly and archived monthly.

In addition to the compilation-recording tool, a linker recording script is also

operating. The linker recording script is a Unix shell script. This script records the object

name, date and time when the linker is invoked.

The compilation analysis tool is designed to aggregate compilation error message

information into a format that is easily analyzed for the identification of statistical

distributions.

Originally, the probability of a given error type was to be computed using a form

of time series analysis. This analysis was futile and was not done, because many students

chose to solve only one error type at a time. Thus, for these students, the probability of a

given error being repeated is primarily dependent upon the presence of other errors. The

distinct error ratio (DER) analysis (see Section 5, Results) and Project 9 level of effort

result are sufficient indicators of novice programmer behavior.

Processing the recorded compilation data was done in three phases:

1. Generate a list of distinct errors

2. Generate a table of information about each event

3. Generate a table of information about the error message data associated with

each event

In phase one, a table of all known distinct errors was generated. This was done by

a series o f Unix utilities. These Unix utilities included "sed" (for string recognition), sort

(to order the error messages), and "unique" (to create a list of distinct error messages).

The result of this phase was that each distinct error message was assigned a unique

identification number. Two examples of distinct messages are given below:

• 1044: "token" is undefined

• 2009: warning: Program_Error may be raised at runtime

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Message numbers beginning with the number one were error messages. Message

numbers beginning with two were warning messages. The distinct messages were placed

into a file.

In phase two a table of distinct and non-repeating event data was generated for

each compile. An event was one compile of a specified source code file. A program was

written to do the data transformation, the compilation analysis tool. The result of this

tool was one record per compile. The format of the record is given in the table below.

The collection of all these records was then stored in a database table. The format of the

date is not year 2000 ("Y2K") date format compliant; the experiment was started in 1997

and completed in 1999. Date format compliance was never an issue in the experiment.

Column Name Description
event id Unique identification number for each compile
userid Student's userid (such as bjones)
date Six digit number, format YYMMDD, the date

the source code was compiled
time Six digit number, format HHMMSS, the time

the source compilation began
projected Two digit project number, valid project

numbers are 1 through 9, the value 0 means
the compile is not directly project related

lines Compiler reported, number of program lines
package Package identifier (1 means program, 2 means

package)
clean_compile 1 means clean compile, 2 means warning or

error messages
post_link Program was linked (1 means yes, 0 means no)
program_name File name of the program (such as

proj_03.adb)

In phase three, a file of compilation error occurrences was created. Another result

of the data transformation program was the creation of the compilation error occurrence

record. The record's format was given in the table below. The phase two and phase three

processing were combined into a single program; such that, both phases were done

together. The collection of all these records was then stored in a database table.

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Column Name Description
event_id Unique identification number for each compile
line_number Program line number where error reported
message_id Error identification number

Once all files were created, the data was loaded into a Microsoft Access 97

database (as tables) for processing.

3.8 Additional Information

The purpose of this subsection is to document additional items done by the

instructor as part of teaching the classes. These items tie back to Section 2.7, Teaching

CS1 Students.

Reid [Reid, 1994] developed a set of window based objects. One of these objects

is a droid with 16 programmable control points. This exercise was changed from a

programming assignment into a classroom exercise. The goals of the class exercise were

to demonstrate the following:

• Use loops and use nested loops

• Have starting conditions and ending conditions

• Keep the exercise simple enough that it could be "programmed" by the class

The set of motions chosen was dancing — in particular, the bunny hop. Several students

were invited to the front of the classroom. The students were divided into two groups —

programmers and performers. The programmers were required to create a "program" that

included "N" number of iterations of the bunny hop set. FOR LOOPs were used.

The results were as follows -- students demonstrated the following:

• Knowledge of FOR LOOPs

• Comprehension of how to use the FOR LOOPs

After the exercise students had to explain how they would apply this knowledge to the

upcoming homework project. Later students performed a class exercise in drawing

analogies between the number of dancers and processor architectures. Computer

architectures analyzed include SISD, SIMD, and MIMD [Hurley, 1994].

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Another technique used was to appoint a student to represent a programming

language construct. The student became the symbol or icon representing the

programming language construct. For example, one student was appointed to be the

"loop lady". In many (but not all) classroom exercises on loops, the instructor started the

exercise and the loop lady completed the exercise. The "loop lady" was associated with

the following loop syntax:

• FOR LOOP

• Loop increment variable

• END LOOP

The purpose of the "loop lady" symbol was to get students to think of all three items

above when they remember information on loops.

Liu [Liu, 1996] recommends that instructors "consider a remedial introductory

course for incoming students who are less prepared". This is proposed as one of several

ways help retain female computer science students. Additional drill and practice

instruction was available to students during weeks 10 through 15 of the course. These

sessions were offered at a time chosen by the students — normally late Friday afternoon

(one-two hours long). The primary purpose of these classes was to teach students how to

study for, and take, an examination. These additional sessions were recommended for

students whose grade average was below "C". However, any student regardless of grade

average could attend. Attendance to these drill and practice sessions was optional. These

extra sessions had the following structure:

• 20 minutes on the current homework project

• 25 minutes drill and practice on one pseudo-final exam question

• 25 minutes drill and practice on another pseudo-final exam question

• 10 minutes of after class questions

The topic was drawn from the course material. For example, in the lecture on functions

and procedures, the students were taught the following items:

• Identify the components of a function

• Identify the components of a procedure

• Write a simple function

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

• Write a simple procedure

• Rewrite a function as a procedure

• Rewrite a procedure as a function (if possible)

• Create a one-page outline of the material presented and reference the textbook

by page number

As an aid in organizing and learning the material, students were taught something

about David Ausubel's learning theory. Students were introduced to Ausubel's advanced

organizer concept and encouraged to build their own organizer [Ausubel, 1970].

The organizer used was a hypothetical program named "bob"; the program was

organized like a ladder where students place, "hang", information. For example, when

students reviewed functions, the students were asked to place the functions learned in the

organizer and then write procedures that performed the same work as the functions. At

the next extra session, students were reminded about the procedures and asked to

mentally retrieve the functions. Another example, when students reviewed records and

arrays, the students were asked to place the arrays and records in the organizer and then

compose arrays of records and records that contain arrays. Again at the next extra

session, students were reminded about arrays of records and asked to mentally retrieve

basic array and record information. The program name bob was intentional. After the

organizer concept is implanted in the students, lecture material was often structured

around routines named bob and array and record definitions named bob. Students in the

extra sessions have been taught to associate the name "bob" with storing information

away. After many weeks of practice, the "program bob" also contained other reference

information, like textbook page numbers. During the final exam review, students were

asked again to retrieve information.

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

4 COURSE CONTENT OVERVIEW

This section of the document presents the control group course materials, the

treatment group replacement course materials, and the schedule of material presentation.

In addition, this section discusses the motivation for the replacement course materials.

This section discusses the following materials in the order listed:

• CS1 course outline without the concurrency and parallelism paradigm

• CS1 course outline as taught in the Fall of 1997

• Additional materials introduced in the Fall of 1997

• Introductory concurrency and parallelism materials to be included in a CS1

course

• Introductory concurrency and parallelism materials to be excluded from a CS1

course

• CS1 course outline with concurrency and parallelism introduced

4.1 Current CS1 Course Outline

The class named Introduction to Computing, Computer Science (CSci) 51, is the

introductory computer science class for computer science majors and computer

engineering majors at George Washington University. It is the CS1 class. The class is

taught two days per week for 16 weeks. Two of the 16 weeks are used for review and

examination; therefore, only 14 weeks of class time are available for instruction. One

possible weekly class schedule, as prepared by Feldman [Feldman, 1997], is given below

(the item numbers represent the week):

1. Introduction (from Chapter 1)

2. Introduction to Programming with Ada 95 (from Chapter 2)

3. Introduction to Design, Enumeration Types, the Spider (from Chapter 3)

4. Using Packages (from Chapter 3)

5. Decision Statements (from Chapter 4)

6. Writing Functions and Packages (from Chapter 4)

7. Review for Mid-term Exam and Exam

8. Counting Loops, Introduction to External Files (Chapter 5)

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

9. General Loops, Exception Handling (Chapter 6)

10. Writing Procedures, Parameter Modes, Robust Input (Chapter 6)

11. Case Statements, Math Library, Random Numbers (Chapter 7)

12. Composite Types: Records (Chapter 8)

13. Composite Types: Arrays (Chapter 8)

14. Strings and Files, Part 1 (Chapter 9)

15. Strings and Files, Part 2 (Chapter 9)

16. Review for Final Exam and Exam

The chapter numbers are from the Feldman and Koffinan text. In addition to the two

weekly class lectures, the class includes a one hour lab per week. Class lecture and lab

attendance is required. Both the lecturer and lab instructor provide office hours. Office

hours are operated on a first come, first served, bases; appointments are not required.

This paragraph contains a general listing of the topics covered in the CS1 class.

The information is organized on a week-by-week basis (as presented by Feldman). The

topics covered in week one (1) are as follows:

• Syllabus

• Computer account setup and use of electronic mail (Email)

• Background on Ada

• Components of a computer

• Syntax and semantics, a definition

The topics covered in week two (2) are as follows:

• Syntax and semantics, a definition

• First program compilation and program execution

• Execution exception, its general appearance

• The “look” and general form of Ada

• Numerical input and output

• Declaration of variables and constants

• Assignment statements

• Input / output statements

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

• Beginning data types and expressions

• Software development and project requirements, as defined by a case study

The topics covered in week three (3) are as follows:

• Building programs from existing information

• Extending a problem solution

• Introduction to packages (WITH)

• Package building blocks (methods called functions and procedures)

• Using a screen control package

• Introduction to the Spider

• Enumeration types (operations and input / output)

Most of the topics presented in week three are related to the rationale for, and the use of,

packages. The topics covered in week four are an extension of week three; these topics

include the following:

• Importance of packages

• Using the Ada package calendar

• Using packages

• Using the Ada Text_IO package - several data types are output using put

• Subprograms in packages — concept of a method

• Scope of a variable declared in a PACKAGE

• Using a constant value declared in a PACKAGE

The topics covered in week five (5) include the following items about decisions:

• IF ... THEN statement

• IF ... THEN... ELSE statement

• IF ... THEN... ELSEF ELSE statement

• Logical operators <, <=, >, >=, =, /=

• Nested IF statements and nesting level

The topics covered in week six (6) include the following about functions and packages:

• FUNCTION Statement — specification

• FUNCTION BODY Statement

• Subprogram parameters — all “IN” for FUNCTIONS

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

• RETURN statement

• Scope of a variable in declared in a FUNCTION

• PACKAGE specification

• PACKAGE BODY

• More on WITH

• Creating a simple PACKAGE

• Using a simple PACKAGE

The topics covered in week seven (7) include the review for the mid-term exam and the

exam. The topics covered in week eight (8) include the following:

• FOR LOOP

• Nested FOR LOOP

• Algorithm development using LOOPs

• External file declaration

• External file input -- open, get, close

• SUBTYPE... IS ... RANGE......;

• Logical operators IN, NOT IN

• Overloading concept

• More on Spider using LOOPs

The topics covered in week nine (9) are as follows:

• WHILE statement

• LOOP design — zero iteration, flag control, increment up or down

• LOOP statement and EXIT WHEN statement

• Exception handling: datajerror, constraintjerror

• EXCEPTION WHEN... statements WHEN... statements END

• Introduction to robust input using exceptions

The topics covered in week 10, involving procedures and robust input, are as follows:

• Continuation of robust input using exceptions

• PROCEDURE declaration

• PROCEDURE BODY

• Parameter modes (IN, OUT, IN OUT)

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

• Parameter lists

• Parameter association (named / position)

• Case study: sum_and_factorial (robust input examples)

• Continuation of Spider (more on procedures)

The topics covered in week 11 are as follows:

• More on WITH and USE

• Data types: review of integer, natural, float

• Data types: boolean, character

• Explicit type conversion

• Ada.Numerics package: more on USE, using SQRT and SIN routines

• CASE statement

• Continuation of Spider (random walk)

The topics covered in week 12 include the following about records:

• Records provide organization of data

• TYPE ... IS RECORD

• END RECORD;

• record_name.field_name

• Record operations are store, retrieve, assignment, equality ("=" and "/=")

• Record aggregate assignment

• Records and packages

• Record hierarchies (x.y.z concept)

• Read flies and write records concept (added)

• Introduction to birthdays database (a case study)

The topics covered in week 13 include the following about arrays:

• Arrays provide organization of data

• TYPE... IS ARRAY (<index_range>) of <data_type>

• Array subscript (or array index) concept

• Array operations are store, retrieve, assignment, equality ("=" and "/=")

• Array aggregate assignment

• Using arrays and subscripts as expressions

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

• FOR LOOPs and arrays

• Access to arrays (random or sequential)

• Copying and array

• Arrays with non-integer subscripts

• Simple searching and sorting

• Continuation of birthdays database (a case study)

The topics covered in week 14 include the following about strings and files:

• String data type

• String data type is not character data type

• String assignment, comparison, output

• String concatenation

• String input

• Character and string package Ada.Text_IO

• End_of_Line and End_ofJFile concepts

The topics covered in week 15 are a continuation of the strings and files discussion

presented the previous week:

• Redirection of input and output

• Command line parameters

• File open

• File close

• File input using strings

In week 16 of the class includes the review for the final exam and the exam.

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

4.2 Revised CS1 Course Outline, Fall 1997 Semester

The Fall 1997 Introduction to Computing class, CSci 51, was the control group

for this experiment. The class schedule as taught is given in the table below. The table

includes both the week and the day of the week that the material was covered. Day 1 is

Tuesday; day 2 is Thursday.

Week Days
Text

Chapter Material Covered
1 1 & 2 1 Introduction
2 1 & 2 2 Introduction to Programming with Ada 95
3 1 & 2 3 Introduction to Design, Enumeration Types,

the Spider
4 1 3 Using Packages

2 4 Decision Statements
5 1 & 2 4 Writing Functions and Packages
6 1 & 2 5 Counting Loops; Introduction to External Files
7 1 — Additional Material

2 — Mid-term Review
8 I 6 Exception Handling (Start), General Loops

2 — Mid-term Exam -- Covers Chapters 1 through 5
9 1 & 2 6 Exception handling; Writing Procedures;

Parameter Modes
10 1 & 2 7 Case Statements; Math Library; Random

Numbers, More Data Types
11 1 8 Composite Types: Records

2 Composite Types: Arrays
12 1 8 & 9 Composite Types: Arrays (concluded);

Systematic View of Strings and Files
2 — Last Project, Number 9

13 1 — Last Project, Number 9
2 9 Systematic View of Strings and Files (continued)

14 1 9 Systematic View of Strings and Files (concluded)
2 — Thanksgiving Day Holiday

15 1 — Introduction to Computer Architecture
2 — Final Exam Review

16 1 — (No Class)
* — Final Exam (one week later)

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

The syllabus for the Fall 1997 class, see Appendix B, has a slower schedule. This

syllabus was based on the instructional pace of the prior instructor. For example, the

syllabus states that "decision statements" were to be started in class week five; however,

"decision statements" were started at the end of class week four. This acceleration of the

pace was most noticeable for the topic of arrays. In the syllabus arrays were scheduled

for class week 13; however, the array lectures were completed at the beginning of class

week 12 (this represented a three lecture acceleration of the pace). A comparison of the

control group and treatment groups class schedules is presented later in this section.

4.3 Additional Materials Introduced to the Fall 1997 Class, the Control Group

The following materials were added to all classes:

• Basic object-oriented principles

• Introductory computer architecture

• Order of N notation

• Two-dimensional arrays

• Unix commands

Instruction of these materials is spread out throughout the course, and introductory

computer architecture was repeated as a single class period. This information is included

here to document all materials covered (for repeatability of the experiment).

Students were taught basic object-oriented principles. These principles were a

tool, a framework, to assist in teaching students about functions, procedures, and (and

later in the treatment group) tasks. These principles were taught using the word "item",

rather than object, because students were not taught a rugged definition of "object". The

principles taught were explained as presented by Forsythe and Mavrovouniotis [Forsythe,

1996]; the principles taught were:

• Abstraction — identifying similarities between "items" as a core of object-

orientation

• Encapsulation — the combination of both data and/or methods in. an "item"

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

• Polymorphism -- methods that are used to perform operations are stored

piecewise in the "items"; the compiler identifies the correct method using a

hierarchy defined by the "items" and/or the method's parameters

Introductory computer architecture was taught as a framework for presenting

computer operation and the division of operation within the computer. Computer

architecture topics included:

• Modem PC and its components — processors, memory, disk drive(s),

controller card, monitor, video card, keyboard, CD ROM, and additional

selected components (such as a zip drive) as part of a single user system

• Workstation and its components (the computer Felix) — multiple processors,

multiple memory, multiple disk drives, multiple controllers, and additional

selected components (such as communications processor) as part of a multi

user system

• Single Instruction, Single Data (SISD) model of computation

• Sharing concepts — multi-processing, multi-programming, multi-computing,

time-slicing, and time-sharing

Order of N notation was introduced as a way of understanding the relative number

of iterations necessary to produce a result. Order of N notation was associated with the

generation of geometric shapes. These shapes included lines, triangles, squares,

rhombuses, and rectangles. Students were taught to associate the order of N necessary to

produce these geometric shapes. Order of N notation instruction was highly coupled to

instruction of loops and nested loops.

One-dimensional arrays were part of the introductory programming course (prior

to the control group class). Two-dimensional arrays were introduced for their utility in

applications (such as matrices and determinants).

Unix commands were taught to the students to enable them manipulate, protect,

and share files. The following Unix commands were taught to all students in prior CSci

51 classes (prior to the control group class):

• cat — concatenate, display a file (or files)

• cd — change directory

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

• cp — copy a file (or files)

• Is -1 — list directory contents

• mkdir — make directory

• more — incremental display of a file

• pwd -- display current directory path

• rmdir — remove a directory

• users — display current users on the computer

• "<" ~ redirected input from a file

• ">" - redirected output from a file

The following additional Unix commands were also taught to all CSci 51 students during

the experiment:

• chmod — change mode

• elm — electronic mail, alternative to pine

• grep — display lines that contain specified character sequence

• head -- display the first lines of a file

• script -- record terminal output to a file

• telnet ~ establish session on another Unix computer

• — pipe, concatenate a series of commands

Most Unix commands are taught to the students during the first half of the class.

4.4 Introductory Concurrency and Parallelism Materials to be Included

The concurrency and parallelism material was organized around eight units (one

unit per week). Each unit was designed to require no more than one class period

(approximately 80 minutes). Some units required only 15 to 30 minutes presentation

time (refer to units one and eight). Other units require the entire period (refer to unit

four). Unit two contained both procedures (sequential behavior) and tasks (concurrent

behavior); procedures and tasks were introduced together. The unit topics included:

1. Flynn's models of computation

2. Introduction to procedures and tasks

3. Beginning concurrent concepts

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

4. Modeling a problem concurrently and programming constructs

5. Message passing and programming

6. More concepts of concurrent programming

7. Shared memory and programming

8. Efficiency and Amdahl's law

Two homework assignments commingled sequential and task behavior.

The outline of these units is given in paragraphs below. The outline of these units

includes both the unit content and order of presentation. Other lecture material (such as

records and arrays) is interspersed with the concurrent units.

Unit one was scheduled for course week seven (7). Flynn's models of

computation are discussed as part of a computer architecture lecture. The models of

computation were:

• Single Instruction stream, Single Data stream (SISD)

• Single Instruction stream, Multiple Data stream (SIMD)

• Multiple Instruction stream, Single Data stream (MISD)

• Multiple Instruction stream, Multiple Data stream (MIMD)

• Single Program Multiple Data (SPMD)

SISD model of computation was also taught to the control group.

Unit two was scheduled for course week nine (9). Procedures and tasks were

introduced in the same time period (course week nine). The Ada language material

presented was as follows:

• Prototype for a PROCEDURE (a declaration)

• PROCEDURE BODY

• Parameter modes (IN, OUT, IN OUT)

• Parameter lists and association (named / position)

• TASK TYPE declaration including ENTRY statements

• TASK BODY

• ACCEPT statement (a simple wait)

• DELAY statement

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Students were taught to think of tasks for concurrent work. Concurrent concepts

introduced were as follows:

• Tasks are scheduled

• Simplified Ada task model

• Non-determinism

• Messages are sent to tasks (tasks can wait for a message)

• Tasks start at beginning of the instantiation of an enclosing frame

• Synchronization of tasks

• Tasks writing to a screen

Students were asked as a classroom exercise to visualize "adding up" ten thousand

numbers by hand. The students were also asked to organize a work detail of two or more

students to "add up" all the numbers.

Unit three was scheduled for course week 10. This unit covered the following

concepts (some concepts were repeated from the prior week):

• Non-determinism

• Message passing

task_two.go; - Statement in task one

ACCEPT go; - Statement in task two

• Deadlock

• Interleaving

• Liveness

• Race condition

• Waiting (ACCEPT statement)

• Synchronizing tasks (modeling dependent activities)

Students in the extra class session were asked to crumple paper and pass messages.

Unit four was scheduled for course week 11. The emphasis of this unit was

modeling, more basic concepts and Ada syntax. The modeling part of the unit included

the following applications:

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

• Sequential applications that are better served by concurrent processing [Burns,

1995,pages 30-33]

• Dining philosophers, a concurrent application

The basic concepts and Ada syntax included the following (some repeated) items:

• Tasks are scheduled

• Starting and stopping a task

• Passing a "message" to a task

• How tasks are started (tasks are not called routines)

• Basic concepts

- Atomicity
- Contention
- Communication
- Interleaving

• Simple wait (ACCEPT statement)

• Semaphore

• Other types of waits (using SELECT in combination with "OR" or "ELSE")

[Cohen, 1986, page 728-729]

- Busy waits
- Conditional waits
- Selective waits
- Timed waits

Unit five was scheduled for course week 12. The emphasis of this unit was

message passing. The unit contained the following information:

• Message passing tied to object-oriented methodology

• Rendezvous (more on synchronization)

• Message passing characterization

- Tasks (processes) exchange messages to synchronize activities

- Tasks (processes) exchange messages to pass data

- Each task has a unique identifier (or tag)

- Messages are sent to a single process (task)

- Messages are sent to all processes, called a broadcast

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

- Message passing works on computers with distributed memory

- Message passing works on distributed computers on a network

• Knowledge within a message (Ada task model):

- Source task must know target task (destination address)

- Target task may not need to know source task (source address)

• Pattern of communication is determined by the programmer

Unit six was scheduled for course week 13. The emphasis of this unit was refined

definitions (using Bustard's curriculum module "Concepts of Concurrent Programming"

[Bustard, 1990]) and completeness. The unit contained the following information:

• More on task scheduling

• Ada task model (simple Ada task model is expanded)

• Atomic instruction concept

• Refined and new definitions:

- Concurrent program
- Parallel program
- Non-determinism
- Process (task) interaction
- Synchronous communication
- Asynchronous communication
- Critical regions
- Mutual exclusion
- Lockout
- Safety
- Multi-tasking

Unit seven was scheduled for week 14. The emphasis of this unit was shared

memory. The unit contained the following information:

• Shared variables

• Relatively simple to program

• Multiple processors access a central memory

• Review of multi-tasking techniques (like semaphores)

• All processors share the same main memory (like SUN SPARCstation 20 or

SUN Enterprise 3000 or Felix)

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

• Memory is available to every processor except for small sections of memory

that may be exclusively used by one processor for short time periods

Unit eight was scheduled for week 15. The emphasis of this unit was factors that

limit efficiency and Amdahl's law. This small unit contained the following information:

• speedup = SN = Ts / Tp

• efficiency = EN = SN / N

• Software overhead

• Load balancing

• Communication overhead

• Amdahl's Law

Due to classroom time constraints, coverage of unit eight materials was limited.

4.5 Introductory Concurrency and Parallelism Materials to be Excluded

The concurrency and parallelism material excluded from the class resulted from

time constraints; some of these topics included the following:

• Selected fundamentals of interprocessor communication

Exclusive Read, Exclusive Write (EREW)
Concurrent Read, Exclusive Write (CREW)
Exclusive Read, Concurrent Write (ERCW)
Concurrent Read, Concurrent Write (CRCW)

• Methods of obtaining parallelism (data parallelism vs. domain decomposition)

• Concurrent programming paradigms (specialist parallelism, agenda

parallelism, and result parallelism) and data structures associated with them

• Bi-directional message passing communications (Ada supports both IN and

OUT parameters, OUT parameters were not addressed)

• Pipelining techniques

• Monitors

• Protected types

• Interconnection Networks (such as fully connected, mesh or torus, ring,

hypercube, and shuffle exchange)

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

• Metrics for interconnection networks (such as connectivity, diameter, and

narrowness)

• Parallel algorithm construction

• Global parallelism (coarse-grained) versus local parallelism (fine-grained)

• Implicit concurrency (fine-grained) versus explicit concurrency (coarse

grained)

4.6 Topics With Removed, Reduced, Or Changed Coverage

This subsection addresses difference in topic coverage between the control group

and the treatment groups. As previously stated in Section 4.2, the syllabus for the Fall

1997 class, refer to Appendix B, had a slower schedule. The Fall 1997 syllabus was

based on the instructional pace of the prior instructor. The instructional pace used in the

experiment was faster; eight classes under the old pace required almost seven classes

under the instructional pace of the experiment. The change in pace was discussed and

accepted by the course director, Professor Feldman. During the Fall 1997 semester, this

provided additional classroom time at the end of the semester. Additional time was

available and spent on Project 9 and the "Systematic View of Strings ands Files" topic

during the Fall 1997 semester. For example, one class period was spent on Project 9

homework. The faster instructional pace decreased the need for sequential topics to be

removed from the treatment group's instruction.

The following topics were removed from the sequential material taught to the

treatment groups:

• Random numbers

• Case studies based on the birthday's database

• Case studies based on the Spider during the second half of the semester

The following topics received reduced class time instruction to the treatment

groups:

• Robust input and output

• Math library

• Case statements

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

All topics removed and reduced were discussed with the course director, prior to the topic

being removed or reduced.

The presentation of procedures and tasks were commingled for the treatment

groups. The identical overhead transparencies on procedures were presented to the

control and treatment groups. Again, this was discussed with the course director.

During the Fall 1997 semester, the week seven class finished early. Thus, the

computer architecture briefing was moved from week 15 for the control group to week 7

for the treatment groups. All instruction given to the control group during the first eight

weeks of the course was repeated with the two treatment groups.

The class textbook presents records before arrays in Chapter 8. The control group

was taught records before arrays. The treatment groups were taught arrays before records

in order for coverage of arrays to coincide with project work, Project 7.

4.7 Revised CS1 Course Outline, Fall 1998 Semester

The Fall 1998 Introduction to Computing class, CSci 51, was the second

treatment group for this experiment. The class schedule as taught is given in the

following table. The table includes both the week and the day of the week that material

was covered. Day 1 is Tuesday; day 2 is Thursday. Schedule differences between the

Spring 1998 treatment group and the Fall 1998 treatment group were as follows:

• Period one (weeks one through eight) — none

• Period two (weeks nine though 16) — at most one class

The in the column named material covered indicates concurrency and parallelism

material presented. The only topic present in the control group and not present in the

treatment group is random numbers and their generation.

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Week Days
Text

Chapter Material Covered
1 1 & 2 1 Introduction
2 1 & 2 2 Introduction to Programming with Ada 95
3 1 & 2 3 Introduction to Design, Enumeration Types,

the Spider
4 1 3 Using Packages

2 4 Decision Statements
5 1 & 2 4 Writing Functions and Packages
6 1 & 2 5 Counting Loops; Introduction to External Files
7 1 Additional Material — Computer Architecture

with Models of Computation *
2 — Mid-term Review

8 1 6 Exception Handling (start), General Loops
2 — Mid-term Exam — Covers Chapters 1 through 5

9 1 & 2 6 Exception Handing (concluded), Parameter
Modes; Introduction to Procedures and Tasks *

10 1 & 2 8 Composite Types: Arrays,
Beginning Concurrent Concepts *

11 1 & 2 8 Composite Types: Records,
Concurrent Modeling and Constructs *

12 1 & 2 7 Case Statements; Math Library, and
Message Passing *

13 1 & 2 — More on Data Types, Last Project, Number 9,
Concepts of Concurrent Programming *

14 1 9 Systematic View of Strings and Files (started);
Shared Memory *

2 9 Thanksgiving Day Holiday
15 1 & 2 9 Systematic View of Strings and Files (concluded)

Efficiency and Amdahl's law *
16 1 — Final Exam Review

* — FINAL EXAM (week after review)

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

5 RESULTS

This section of the document presents the results and findings of the experiment.

This section of the document is organized into the following subsections:

1. Student population

2. Comparability of the groups

3. Assessment of concurrency instruction on learning sequential material

4. Concurrency materials and sequential materials performance comparison

5. Comparison of student performance on a large project

6. Compilation of concurrency and sequential programs findings

7. Correlation of student characteristics to student performance

8. Validity and sensitivity check

9. Hypothesis and findings

In addition to the above items, other observations made during the experiment that are not

directly related to an area of hypothesis or findings can be found in the appendices.

5.1 Student Populations

Students were placed into one of four categories. The four categories are as

follows:

• Novice ~ students included in the experiment

• Experienced ~ students excluded from the experiment due to completing one

or more college level classes in computers and / or computer languages

• Removed ~ students excluded from the experiment for cause

• Withdrawal — students withdrawing from the course at any time

Only students in the novice category were included in the experiment. The student

populations for the three semesters of the experiment are given in the table below.

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Category
Control
Group Treatment Groups Totals

Semester Fall 1997 Spring 1998 Fall 1998
Novice 24 52 21 97

Experienced 4 5 1 10

Removed 2 5 5 12

Withdrawal 5 14 11 30

Initial Class
Enrollment

35 76 38 149

Students were assigned to the removed category for one or more of the following reasons:

• Repeating the course due to a prior failing grade or a prior late withdrawal

• Failing to provide background information in the student survey

• Failing to do most of the homework

• Failing to try to succeed on an examination

• Having a physical handicap that impaired performance

Some examples of actual students removed from the experiment illustrate the point:

• One student refused to do any more than the first of nine project assignments.

• Another student decided not to study for the final exam and sat in the final

examination for two hours and did only one of eleven problems.

• One disabled student refused special treatment until late in the semester and

experienced difficulty in taking exams at Disabled Student Services (DSS).

Students who withdraw from the course have not taken the final examination and

have not completed the last project. These two items are important parts of the

experiment. Therefore, students withdrawing from the class were not included in the

experiment. The withdrawal rate for the Fall 1998 semester was unusually high. This

was partially due to student illness.

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

The Fall and Spring semester classes in the experiment were different in the

following characteristics:

• Spring semester starting enrollment was 75 to 80 students (double the Fall

enrollment)

• Spring semester ending enrollment was 62, while Fall semester ending

enrollments were 30 and 27, respectively

• Spring semester students were younger

• Spring semester students were mostly freshmen while the Fall semester

students were a mix of mostly freshmen and sophomores

All classes in the experiment shared the following characteristics:

• There were more males than females in the class

• Most students were required to take the class

• Entry skill levels were very similar

• The number of foreign students was low

The novice students were placed into several categories of prior computer

programming learning experience. The category selected was based on student survey

responses and student responses to individual questions. These categories were as

follows:

• None ~ the student claimed zero computer-related experience (this includes

high school computer literacy courses)

• HTML — the student had had formal training in HTML in a college course or

in a business setting

• Lost — the student had had college level programming experience in the past

and was unable to use or recall the experience (for example, a 43 year old

student had a college level programming class over 20 years ago)

• Some — the student had some minor experience (typical examples were as

follows: a student took six weeks of Java at another university and withdrew

from the class, another student wrote one Perl script at the office)

• Self taught — two students in the Spring 1998 class had previously purchased

compilers for their home computers and had started learning to program

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

• HS-1 — the student claimed to have completed one high school level class in

computers (a typical class included computer literacy and introductory

programming with Pascal)

• HS-2 — the student claimed to have completed two high school level classes in

computers (the second class is typically a Pascal programming class)

The number of novice students in each of the programming experience categories is given

in the table below. Each of the categories in the table is assigned a factor that is

representative of the programming experience associated with the category (for example,

the factor for category None is 0). Categories where a student's experience may be

beneficial to the student learning to program are assigned a factor of 1. A factor of 2 is

assigned only to the HS-2 category (the experience should have been beneficial to the

student).

Category
Control
Group Treatment Groups

Factor
Assigned

Semester Fall 1997 Spring 1998 Fall 1998

None 14 31 12 0

HTML 1 3 2 I

Lost 3 1 2 1

Some 1 1 3 1

Self Taught 0 2 0 1

HS-1 3 11 1 1

HS-2 2 3 1 2

Novice Total 24 52 21

As previously stated, students who had completed one or more college level

courses in computers were excluded from the experiment (experienced student category).

Thus, categorization of college level student experience is omitted from the table above.

A summary of the general characteristics of the novice student population in the

experiment is given in the table below. The averages are expressed to three significant

digits. The numerical codings used in the table are as follows:

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

• Ratio of Males (female is designated by 0 and male is designated by I)

• Years in College

Freshman is 1
Sophomore is 2
Junior is 3
Senior is 4
Graduate is 5

• Required Class (Required is designated by 1, otherwise 0)

• Skill Level (explained above)

• Foreign Student (Foreign is designated by 1, otherwise 0)

Statistic
Control
Group Treatment Groups

Semester Fall 1997 Spring 1998 Fall 1998
Ratio o f Males

Average 0.542 0.673 0.667

Median 1 1 1

Age (see Figure below)

Average 19.5 18.75 21.1

Median 19 18.5 19

Year in College
Average 1.75 1.08 1.90

Median 1 1 2

Required Class

Average 0.833 0.923 0.857

Median 1 1 1

Skill Level

Average 0.500 0.462 0.476

Median 0 0 0

Foreign Student
Average 0.125 0.038 0.143

Median 0 0 0

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

A box plot of the student's ages is given in Figure 5.1. The box plot is a simple

diagram for assessing symmetry, general equality of location, and equality of variation

among the three groups. The age distribution of the Spring 1998 class is different.

<u
<

Figure 5.1. Novice Student Age By Semester
25.0-1

24.0-

23.0-

22.0-

21.0-

20.0-

19.0

18.0-

17.0-

16.0
Fall 1997 Spring 1998 Fall 1998

Semester

The figure shows that the age distribution of the spring class is younger than the age

distributions of either fall class. The youngest students were in the spring class (age 17).

The box plot shows the following age characteristics of the Spring 1998 students:

• Top line — age 20, normally the 100th percentile (unless outliers are present)

• Box top — age 19, the 75th percentile

• Box bottom — age 18, the 25th percentile

• Bottom line — age 17, normally the 0th percentile (unless outliers are present)

When the 50th percentile (the median) is distinct from the box top or box bottom, the box

diagram includes a center line for the median. When the median is the same as box top or

box bottom, the median does not show in the box plot. The "height" measure of the box

is called the interquartile range (IQR). When outliers are present, represented by little

circles, the nearest line to the little circle(s) represents:

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

• Top line — 75th percentile plus 1.5 IQR

• Bottom line -- 25th percentile minus 1.5 IQR

There were two students in the Fall 1998 semester whose ages are outliers outside

the range of the box plot (there ages are 32 and 43). The average age of the Fall 1998

class was 19.4 years old after these outliers are removed from the average.

Students in the novice category are also categorized based on their homework

participation, either full or partial. Full participation means that the student must have

completed almost all of the computer projects. Some students completed insufficient

homework projects to be included in all program compilation statistics; these students are

placed into the partial participation subcategory (because one or more projects included in

the experiment were not done). Thus, statistics derived from program compilations may

not include the partial participation students. The novice student subcategory populations

for the three semesters of the experiment are given in the table below. The full

participation counts are an upper bound. For example, one full participation student had

over two thousand compilation errors in a single project, this observation is an outlier.

Category Subcategory
Control
Group Treatment Groups Total

Semester Fall
1997

Spring
1998

Fall
1998

Novice
Full 18 44 18 80

Partial 6 8 3 17

Total 24 52 21 97

5.2 Comparability of the Groups

The first eight weeks of each class contained the same sequential material.

During this eight week period the students attended lectures, performed five projects, and

took the mid-term exam. The mid-term exam was given at the end of the eight week

period. The control group and two treatment group classes were compared in this

subsection on their performance during the first eight weeks of class.

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

5.2.1 Mid-Term Exam

The mid-term exam was given in two-parts. Part one was a six question test,

given in the classroom. The second part of exam was a single mini-project to be

completed in lab during mid-term week. Only part one of the mid-term exam was

included in the experiment. Appendix F, Mid-Term Examination, contains the part one

mid-term exam. From this point forward in the document, any reference to mid-term

exam refers solely to the part one, six question, exam.

The overall statistics for the mid-term exam are given in the table below.

Control Group Treatment Groups
Fall 1997 Spring 1998 Fall 1998

Average 59.88 55.79 54.62
Median 65 58 58
Standard
Deviation

12.862 12.670 16.660

Variance 165.419 160.523 277.548

In all three groups the median score is higher than the average score. The maximum

score is 79. The greatest variance in scores is in the Fall 1998 class. Both treatment

group classes are consistent in both average and medians. The control group class has out

performed the treatment group classes in both average and median score.

The box plot for the mid-term exam score is given below in Figure 5.2. The

figure shows the following about the percentile ranks of the classes:

• 100th percentile scores are almost the same

• 75th percentile score for the Fall 1997 class is higher than the others

• 50th percentile score for the Fall 1997 class is higher than the others

• 25th percentile for the Fall 1997 class is between the other two classes.

• 0th percentile score for the Fall 1997 class is higher than the others

The lowest score in the Spring 1998 class is statistically an outlier. In summary, the 75th,

50th (median) and 0th percentiles are higher for the Fall 1997 class, the control group.

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Figure 5.2. Novice Student Mid-Term Scores
80.0q

70.0;

60.0;

50.0;
b
8 40.0-:

30.0;

20.0;

10.0;

0.0 1 1 1 1
Fall 1997 Spring 1998 Fall 1998

Semester

The first item to determine is whether the medians of the three classes are

significantly different. The table below shows the results of normality tests (for all three

groups together) and equal-variance test on the combined groups.

Assumption
Test

Value Probability
Decision

(0.05)
Skewness Normality of Residuals -2.5731 0.010078 Reject
Kurtosis Normality of Residuals -0.7914 0.428726 Accept
Omnibus Normality of Residuals 7.2473 0.026685 Reject
Modified-Levene Equal-Variance
Test 1.1602 0.317881 Accept

The skewness, kurtosis, and omnibus tests are tests of normality. The skewness test

measures the direction and degree of asymmetry of a distribution. The kurtosis measures

the heaviness of the tails of a distribution. The omnibus test combines skewness and

kurtosis in a single measure of the overall normality of a distribution. The Modified-

Levene test is an equal-variance test. The omnibus test result indicates that one or more

of the three groups are not normal. Therefore, non-parametric statistical tests are

required. The Modified-Levene test indicates that there is sufficient equality of variance

80

I

r
i i

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

for a non-parametric test with an equality of variance assumption to be used. The non-

parametric statistical test selected is the Kruskal-Wallis One-Way ANOVA on Ranks.

The results of the Kruskal-Wallis One-Way ANOVA on Ranks test are given in the table

below. See the appendix section "Statistical Tests" for a discussion on "ties".

Method
Chi-Square

(H) Probability
Decision

(0.05)
Corrected for Ties 1.961352 0.375058 Accept Ho

The "Accept Ho" decision means the following: the three groups (both control and

treatment) are not significantly different when tested around their medians.

The histogram of the Fall 1997 control group mid-term scores is shown below in

Figure 5.3. The distribution is bimodal. There is only one student with a test score below

40. The scores have clustered in two distinct groups.

Figure 5.3. Novice Students, Control Group, Mid-Term Scores
5.0-j

4.0

3.0s
9
9

2.0

1.0

0‘°o!o 8X) 16.0 24.0 32.0 40.0 48.0 56.0 64.0 72.0 80.0
Test Score

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

The histograms of the two treatment groups are shown below. The histogram of

the Spring 1998 treatment group mid-term scores is shown in Figure 5.4. The histogram

of the Fall 1998 treatment group mid-term scores is shown in Figure 5.5.

Figure 5.4. Novice Students, Spring 1998 Treatment Group, Mid-Term Scores

ase
U

10.0

9.0

8.0-

7.0

6.0

5.0-

4.0-

3.0-

2.0

0.0 I 1 1 'I 1 ‘ "T
>.0 40.0 48
Test Score

Figure 5.5. Novice Students, Fail 1998 Treatment Group, Mid-Term Scores
5.0-.

4.0-

~ 3.0-

e
U

2.0 -

1.0-

0.0
0:0 8.0 16.0 24.0 32.0 40.0 48.0 56.0 64.0 72.0 80.0

Test Score

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

The Spring 1998 treatment group distribution is not bimodal. There are seven

students with test scores below 40. The histogram bars are almost contiguous. The

distribution has two peaks of eight students each.

The Fall 1998 treatment group distribution is not bimodal. The distribution is

fairly flat, except for the four test score at about 56. There are five students with scores

below 40. The control group has the least students with scores below 40.

5.2.2 Pre-Concurrency Projects

There were five projects given before concurrency was introduced. The first

project was very simple, correct some syntax errors and change an existing program. The

first project did not include original programming and was not included in the

experiment. Projects two, three, four, and five were included in the experiment. These

projects provided simple problems for the students to solve.

Students were graded on the best seven project scores from the first eight projects.

In addition, students had to complete the last and large project, Project 9, as part of their

grade. This grading method was a given in teaching the Introduction To Concurrency

class. Therefore, some students chose to skip one of the first five projects. While, other

students chose not to skip any of the first five projects and reserve "skipping a project"

for later. Both situations are examined in this subsection.

Pre-Concurrency Projects With Zero Scores Included. The overall statistics

for projects two through five (including zero scores) are given in the table below. Each of

these projects are scored on a 20 point scale. The average of the four project scores was

computed for each student.

Includes Zero
Scores

Control Group Treatment Groups
Fall 1997 Spring 1998 Fall 1998

Average 17.16 18.11 17.63
Median 18 18.75 18.25
Standard
Deviation

2.480 1.966 1.981

Variance 6.151 3.866 3.923
Student Count 24 52 21

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

In all three groups the median score is higher than the average score. The higher variance

in the control group results from five of the 24 students electing to skip Project 5. All

three groups are consistent in both average and medians. The box plot for project two

through five scores is given below in Figure 5.6.

Figure 5.6. Project Scores (Pre-Concurrency), With Zero Project Scores
20.0-.

16.0-

12.0-

8.0-

4.0-

0 .0 -

Fall 1997 Spring 1998 Fall 1998

Semester

The figure shows the following about the percentile ranks of the project scores:

• 100* percentile scores are the same for all groups

• 75th percentile score for the Spring 1998 class is higher than the others

• 50th percentile score for the Spring 1998 class is higher than the others

• 25* percentile score for the Spring 1998 class is higher than the others

• 0* percentile score for the Spring 1998 class is higher than the others

The Spring 1998 treatment group has slightly outperformed the two fall groups. Many of

the outliers in the Fall 1997 group result from five of the 24 students electing to skip

Project 5. The outliers in the Spring 1998 group result from students skipping assorted

projects (only five of 52 students did not do one of the projects). There are no outliers in

the Fall 1998 group (only two of 21 student did not do one of the projects).
84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

The table below shows the results of the normality tests (for all three groups

together) and the equality of variance test on the combined groups.

Assumption
Test

Value Probability
Decision

(0.05)
Skewness Normality of Residuals -4.3146 0.000016 Reject
Kurtosis Normality of Residuals 1.1091 0.267397 Accept
Omnibus Normality of Residuals 19.8457 0.000049 Reject
Modified-Levene Equal-Variance
Test 0.3759 0.687731 Accept

The omnibus test result indicates that one or more of the three groups are not normal.

The Modified-Levene test indicates that there is sufficiently equality of variance for a

non-parametric test with an equality of variance assumption to be used. The non-

parametric statistical test selected is the Kruskal-Wallis One-Way ANOVA on Ranks.

The results of the Kruskal-Wallis One-Way ANOVA on Ranks test are given in the table

below.

Method
Chi-Square

(H) Probability
Decision

(0.05)
Corrected for Ties 5.634519 0.059770 Accept Ho

The "Accept Ho" decision means the following: the three groups (both control and

treatment) are not significantly different when tested around their medians.

Pre-Concurrency Projects With All Projects Completed. The overall statistics

for projects two through five, where all four projects have been completed, are given in

the table below. The average of the four project scores was computed for each student.

In the control group the average and median are almost equal. In the treatment groups the

median scores are still higher than the average score. The variances are reduced in all

groups as compared to the project scores with zeros included. The box plot for project

two through five scores is given below in Figure 5.7.

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Control Group Treatment Groups
Fall 1997 Spring 1998 Fall 1998

Average 18.29 18.54 18.05
Median 18.25 19 18.75
Standard
Deviation

0.947 1.507 1.517

Variance 0.898 2.270 2.303
Student Count 19 47 19

Figure 5.7. Project Scores All Projects Completed (Pre-Concurrency)
20.0-t

16.0-

12.0uueu
8.0-

4.0-

0.0
Fall 1997 Spring 1998 Fall 1998

Semester

The Spring 1998 treatment group slightly outperformed the two fall groups. The only

remaining outliers are in the Spring 1998 group.

The table below shows the results of the normality tests (for all three groups

together) and the equality of variance test on the combined groups.

Assumption
Test

Value Probability
Decision

(0.05)
Skewness Normality of Residuals -4.6789 0.000003 Reject
Kurtosis Normality of Residuals 2.8611 0.004221 Reject
Omnibus Normality of Residuals 30.0778 0.000000 Reject
Modified-Levene Equal-Variance
Test 0.8754 0.420538 Accept

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

The omnibus test result indicates that one or more of the three groups are not normal.

The Modified-Levene test indicates that there is sufficiently equality of variance for a

non-parametric test with an equality of variance assumption to be used. The non-

parametric statistical test selected is the Kruskal-Wallis One-Way ANOVA on Ranks.

The test results are given in the following table.

Method
Chi-Square

(H) Probability
Decision

(0.05)
Corrected for Ties 4.313945 0.115675 Accept Ho

The "Accept Ho" decision means the following: the three groups (both control and

treatment) are not significantly different when tested around their medians.

Figure 5.8 is the histogram of the combined project scores for all three groups.

After eight weeks in the class all groups are doing well on projects two through five

{when the students chose to do the projects).

Figure 5.8. Project Scores, All Projects Completed (Pre-Concurrency)
(All Groups Together)

ese
U

35.(h

30.0

25.0

20.0

15.0

lO.Oj

5.0-

0.0
0!0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0

Score

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Conclusion. Significant differences in the mid-term scores and the project scores

(projects two through five) were not found among any of ihe groups. Therefore,

significant differences between the three groups were not found. The control group and

two treatment groups are comparable for the purposes of this experiment. Differences in

age and maturity (by college year standing) are not a cause of significant differences

among the control group and the two treatment groups at eight weeks into the semester.

5.3 Assessment Of Concurrency Instruction On Learning Sequential Material

An assessment of the impact of concurrency instruction on learning sequential

material was done as part of the final exam. The final exam in all three classes had

eleven questions. The layout of the final exam for the treatment groups was as follows:

• Questions based on sequential material were 1, 3, 5, 9, 10, and 11 (57 points

total)

• Questions based on concurrent material were 2,4, 7, and 8 (41 points total)

• Extra complexity sequential question (like extra credit) was question 6 (12

points)

The control group also had an eleven question final exam. Questions 1, 3, 5, 9, 10, and

11 remained almost the same for both the control group and the two treatment groups.

There is one exception that is covered later in this subsection. The test scores for each

group were compared as an assessment of concurrency instruction on learning sequential

material. The control group students were not taught concurrency material. Question 6

(extra complexity sequential question) was not part of the study.

Six Common Sequential Questions. The overall statistics for the six common

sequential final exam questions are given in the table below.

Control Group Treatment Groups
Fall 1997 Spring 1998 Fall 1998

Average 35.54 31.40 36.95
Median 38 32 39
Standard
Deviation

11.662 8.997 11.469

Variance 135.998 80.951 131.548

88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

In all three groups the median score is above the average score. The maximum score

possible is 55. Two of 57 points are removed from the inter-group comparison. The Fall

1998 treatment group has the highest scores. The Spring 1998 treatment group has the

lowest scores. The Fall 1997 control group and the Fall 1998 treatment group have very

close average and median scores. The difference between the minimum and maximum

average is about 5.5. The difference between the minimum and maximum medians is 7.

The fall classes did better than the spring class. The box plot for the six sequential

questions is given in Figure 5.9 below.

Figure 5.9. Final Exam Six Sequential Question Scores
60.0]

50.0;

40.0-
« Ik*©
«S 30.oj

20.0;

lo.oj

0 .0H----------------------------1----------------------------1---------------------------- 1---------------------------- 1

Fall 1997 Spring 1998 Fall 1998

Semester

The figure shows the following about percentile ranks of the final exam six sequential

question scores:

• 100th percentile scores are in the same range (51 to 53)

• 75th percentile score for the Spring 1998 treatment group is about the same as

the 50th percentile scores (medians) of both the Fall 1997 control group and

the Fall 1998 treatment group.

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

• 25* percentile score for the Fall 1997 control group and the Spring 1998

treatment group are about the same and both are less than the Fall 1998

treatment group.

• 0* percentile scores are in the same range (13 to 15)

The top 50 percent o f the Spring 1998 treatment group under performed the two other

groups. Also, the outlier subject is in the Spring 1998 treatment group. The outlier

subject is also the lowest score of all three groups. The outlier bound in this figure is set

for 1.1 IQR. As stated earlier in the document, the interquartile range (IQR) is the

"height" measure of the box (the 75* percentile to the 25* percentile).

The table below shows the results of the normality tests (for all three groups

together) and the equal-variance test on the combined groups.

Assumption
Test

Value Probability
Decision

(0.05)
Skewness Normality of Residuals -1.4576 0.144960 Accept
Kurtosis Normality of Residuals -1.2665 0.205320 Accept
Omnibus Normality of Residuals 3.7286 0.155003 Accept
Modified-Levene Equal-Variance
Test 1.6534 0.196922 Accept

The omnibus test result indicates that all three groups pass the normality test. The

Modified-Levene test indicates that there is sufficient equality of variance for a non-

parametric test with an equality of variance assumption to be used. The non-parametric

statistical test selected is the Kruskal-Wallis One-Way ANOVA on Ranks. The results of

the Kruskal-Wallis One-Way ANOVA on Ranks test are given in the table below.

Method
Chi-Square

(H) Probability
Decision

(0.05)
Corrected for Ties 6.020551 0.049278 Reject Ho

The "Reject Ho" decision means that the Spring 1998 treatment group score is

significantly different than the Fall 1997 control group and the Fall 1998 treatment group,

when tested around their medians. Since only one treatment group is the source of the
90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

rejection (the Spring 1998 treatment group) and the outlier is in Spring 1998 group, the

test was rerun with the outlier removed. The results of rerunning the test with the outlier

removed are given in the table below.

Method
Chi-Square

(H) Probability
Decision

(0.05)
Corrected for Ties 5.420731 0.066512 Accept Ho

The "Accept Ho" decision means the following: the three groups (both control and

treatment) are not significantly different when tested around their medians. The

effect of this one outlier illustrates the impact of outliers on small sample populations.

In the table below are the average (on the left) and median (on the right) for each

of the six test questions. Test questions are changed slightly from semester to semester.

The results for question five in the Spring 1998 treatment group are in bold. The Spring

1998 treatment group was asked to solve a question that was similar to the question five

given to the other two groups. The difference was that the Spring 1998 group question

included an "integer divide" and the other groups' question did not. This clearly impacted

the test results for question five.

Control Group Treatment Groups
Fall 1997 Spring 1998 Fall 1998

Question 1 5.13 5 4.56 5 5.14 5
Question 3 5.29 6 4.50 5 5.33 6
Question 5 4.13 4 3.27 2.5 4.43 5
Question 9 7.08 8 5.92 6.5 6.24 6

Question 10 7.25 8 6.87 8 8.38 9
Question 11 6.67 6 6.29 6 7.43 8

Total 35.54 38 31.40 32 36.95 39

Five Common Sequential Questions. The overall statistics for the five common

sequential final exam questions (with question five removed) are given in the table below.

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Control Group Treatment Groups
Fall 1997 Spring 1998 Fail 1998

Average 31.42 28.14 32.52
Median 33.5 30 34
Standard
Deviation

9.873 7.731 9.548

Variance 97.471 59.765 91.162

In all three groups, the median score is above the average score. The maximum score

possible is 47. The Fall 1998 class group, a treatment group, has the highest scores. The

Spring 1998 treatment group has the lowest scores. The Fall 1997 control group and the

Fall 1998 treatment group have very close average and median scores. The difference

between the minimum and maximum average is about 4.5. The difference between the

minimum and maximum medians is 4. The fall classes did better than the spring class.

The removal of question five from the scores decreased the difference between the

minimum and maximum medians from 7 to 4. The box plot for the five sequential

question score is given in Figure 5.10 below.

Figure 5.10. Final Exam Five Sequential Question Scores
50.(h

10.0-

o.o-l-------------1-------------1-------------1-------------1
Fall 1997 Spring 1998 Fall 1998

Semester

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

The figure shows the following about percentile ranks of the final exam five sequential

question scores:

• 100th percentile scores are in same (45)

• 75th percentile score for the Spring 1998 treatment group is about the same as

the 50* percentile scores (medians) of both the Fall 1997 control group and

the Fall 1998 treatment group.

• 25* percentile score for the Spring 1998 treatment group is slightly higher the

25* percentile score for the Fall 1997 control group.

• 0* percentile scores are in the same range (11 to 14)

Again, the top 50 percent of the Spring 1998 treatment group under performed the two

other groups. The outlier subject in Spring 1998 treatment group data has been removed.

The outlier bound in this figure is set for 1.5 IQR.

The table below shows the results of the normality tests (for all three groups

together) and the equal-variance test on the combined groups for the five sequential

questions. The omnibus test result indicates that all three groups pass the normality test.

The Modified-Levene test indicates that there is sufficiently equality of variance for a

non-parametric test with an equality of variance assumption to be used. The non-

parametric statistical test selected is the Kruskal-Wallis One-Way ANOVA on Ranks.

Assumption
Test

Value Probability
Decision

(0.05)
Skewness Normality of Residuals -1.5925 0.111275 Accept
Kurtosis Normality of Residuals -0.7483 0.454264 Accept
Omnibus Normality of Residuals 3.0960 0.212672 Accept
Modified-Levene Equal-Variance
Test 1.5547 0.216688 Accept

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

The results of the Kruskal-Wallis One-Way ANOVA on Ranks test are given in the table

below.

Method
Chi-Square

(H) Probability
Decision

(0.05)
Corrected for Ties 5.329297 0.069624 Accept Ho

The "Accept Ho" decision means the following the three groups (both control and

treatment) are not significantly different when tested around their medians.

The histograms for each group are presented in the figures below. The shape of

the Spring 1998 treatment group density trace line is the most unimodal. The shape of

the Fall 1997 control group density trace line is the most bimodal.

Figure 5.11. Final Exam Five Sequential Question Scores
(Novice Students, Fall 1997 Control Group)

5.0n

0.0 10.0 20.0 30.0 40.0 50.0
Test Scores

94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Figure 5.12. Final Exam Five Sequential Question Scores
(Novice Students, Spring 1998 Treatment Group)

I2.0n

ase
w

i i i i i i
0.0 10.0 20.0 30.0

Test Score
40.0 50.0

Figure 5.13. Final Exam Five Sequential Question Scores
(Novice Students, Fall 1998 Treatment Group)

5.0-i

4.0-

sso
U

0.0— i i I—i—i l r -r i i T i n — i t r h

Test Score

95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Conclusion. Significant differences in the final exam sequential question scores

(either the six question set or the five question set) were not found among any of the three

groups. Therefore, significant differences between the control group and the treatment

groups were not found. Although, differences in age and maturity (by college year

standing) may have impacted the Spring 1998 treatment group at 16 weeks into the

semester; significant differences in the groups performance on sequential questions in the

final exam were not found. Subsection 5.7 of this document presents the correlation of

maturity to student performance. Subsection 5.8.3 of this document presents different

grouping selections that increase the probability results for the six question set (from the

0.06 range to the 0.30 range of probability). Subsection 5.8.3 also presents a comparison

of the Fall 1997 control group to the Fail 1998 treatment group (with the probability in

the range of 0.69).

96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

5.4 Concurrency Materials And Sequential Materials Performance Comparison

A comparison of the students' ability to solve sequential questions and

concurrency questions was done as part of the final exam. Four final exam questions

were given to the treatment groups on concurrency material. The students selected the

order in which the questions were answered. The students also chose which questions, if

any, to skip.

In order for the sequential question scores to be compared to the concurrency

question scores, the number of sequential question points must be normalized to the

number of concurrency question points (41 points). For the purpose of this document, the

term "sequential index" refers to the sequential questions score normalized over the total

concurrency questions score (41 points). Scaling the six sequential test questions score

on the final exam creates the sequential index. First, a factor is created that equals 41 /

55, where 55 of the 57 total points from the six sequential final exam questions are used.

Second, each student's sequential score is scaled by this factor (the value is 0.7454545).

A second sequential index is created for the first concurrency question on the final

exam (question 2); another factor is created that equals 10/55 (the value is 0.1818182).

Again, each student's sequential test questions score is multiplied by the factor to create

the sequential index.

The sequential index is a simple tool for comparing between a group's

concurrency scores and their sequential scores on the final exam.

Four Concurrency Questions. The overall statistics for the four concurrency

final exam questions given to the two treatment groups are in the table below.

Treatment Groups
Spring 1998 Fall 1998

Sequential * Concurrency Sequential * Concurrency
Average 23.72 15.02 27.55 17.76
Median 23.9 14.5 29.1 18
Standard
Deviation

6.380 7.334 8.558 6.602

Variance 40.707 53.784 73.244 43.590

97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

The indicates the sequential score is a created sequential index. In both treatment

groups the students do better on the sequential questions than on the concurrency

questions. The Fall 1998 treatment group did better overall than the Spring 1998

treatment group. The difference between the minimum and maximum concurrency

average is about 2.75. The difference between the minimum and maximum concurrency

median is 3.5.

There is a difference in the instructional materials of the two treatment groups.

The Spring 1998 treatment group received their concurrency instructional materials and

supplemental sequential materials on a week-by-week basis. The Fall 1998 treatment

group received their concurrency instructional materials and supplemental sequential

materials at the beginning of week nine of the class. In addition, the Fall 1998 treatment

group received some of their concurrency instructional material as a 14 page web-

formatted document. All information given to both treatment groups was identical. The

differences were in the timing of the presentation of the printed material and the format of

the printed material.

The box plot with the comparison of the sequential and concurrency question

scores for the Spring 1998 group is given in Figure 5.14 below.

Figure 5.14. Sequential / Concurrency Material Comparison, Spring 1998 Group
40.0-1

30.0-

u
ew 20 .0-

10.0

0.0 '

Sequential Concurrency
Material Material

98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

The Figure 5.14 shows the following about the percentile ranks of the different material

question scores:

• 100th percentile score for the concurrency material is between the 75th and

100th percentile score for the sequential material

• 75th percentile score for the concurrency material is approximately at the 25th

percentile score for the sequential material

• 25th percentile score for the concurrency material is just below the percentile

score for the sequential score

The Spring 1998 treatment group under performed in concurrency material as compared

to the sequential material. The box plot with the comparison of the sequential and

concurrency question scores for the Fall 1998 group is given in Figure 5.15 below.

Figure 5.15. Sequential / Concurrency Material Comparison, Fall 1998 Group
40.0-.

30.0-

©wVI 20 .0 -

10.0-

0.0
Sequential Concurrency
Material Material

The Figure 5.15 shows the following about the percentile ranks of the different material

question scores:

• 100th percentile score for the concurrency material is at the median score for

the sequential material

• 75th percentile score for the concurrency material is approximately at the 25th

percentile score for the sequential material
99

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

The Fall 1998 treatment group under performed in concurrency material as compared to

the sequential material.

The table below shows the results of the normality test and the equal-variance test

for the Spring 1998 treatment group data. The omnibus test result indicates that the two

distributions (sequential index and concurrency scores) pass the normality test.

Assumption (Spring 1998 Data)
Test

Value Probability
Decision
(0.05)

Skewness Normality of Residuals 1.7490 0.080284 Accept
Kurtosis Normality of Residuals -0.2696 0.787490 Accept
Omnibus Normality of Residuals 3.1318 0.208900 Accept
Modified-Levene Equal-Variance
Test 0.3956 0.530794 Accept

The Modified-Levene test indicates that there is more than sufficient equality of variance

in the Spring 1998 for a non-parametric test with an equality of variance assumption to be

used. The test selected is the Mann-Whitney U test. The results of the Mann-Whitney U

test are given in the table below.

Alternative
Hypothesis Test Value Probability

Decision
(0.05)

D(S) o D(C) 5.4078 0.000000 Reject Ho

D(S) > D(C) 5.4144 1.000000 Accept Ho

Two alternative hypotheses are presented. The "D(S) o D(C)" hypothesis is the null

hypothesis (the probability that there is no significant difference between the two groups).

The second hypothesis shown is the difference hypothesis with the highest probability (in

this case the sequential distribution, "D(S)", is greater than concurrency distribution,

"D(C)" with a probability of 1.00000). Clearly, the sequential index score is greater than

the concurrency material scores for the Spring 1998 treatment group.

The table below shows the results of the normality test and the equal-variance test

for the Fall 1998 treatment group data. The omnibus test result indicates that the two

distributions (sequential index and concurrency scores) pass the normality test.
100

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Assumption (Fall 1998 Data)
Test
Value Probability

Decision
(0.05)

Skewness Normality of Residuals -1.3694 0.170874 Accept
Kurtosis Normality of Residuals -0.1451 0.884671 Accept
Omnibus Normality of Residuals 1.8963 0.387458 Accept
Modified-Levene Equal-Variance
Test 1.1146 0.297413 Accept

The Modified-Levene test indicates that there is more than sufficient equality of variance

in the Fall 1998 data for a non-parametric test with an equality of variance assumption to

be used. The test selected is the Mann-Whitney U test. The results of the Mann-Whitney

U test are given in the table below.

Alternative
Hypothesis

Test Value
Probability

Decision
(0.05)

D(S) o D(C) 3.5994 0.000319 Reject Ho

D(S) > D(C) -3.6245 0.999855 Accept Ho

Again, the sequential index score is greater than the concurrency material scores for the

Fall 1998 treatment group.

A comparison of the concurrency question scores for the two treatment groups is

given below in Figure 5.16. The figure shows the following about the percentile ranks of

the two treatment groups on the concurrency material:

• 100th percentile score for the Spring 1998 group is higher

• Each other percentile scores for the Fall 1998 group are higher than the

corresponding percentile score for the Spring 1998

The Spring 1998 treatment group under performed in concurrency material as compared

to the Fall 1998 treatment group.

101

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Figure 5.16. Comparison of Treatment Concurrency Material Performance

30.0-

20.0 -

10.0-

0.0
FaU 1998Spring 1998

In the following paragraphs the results of each concurrency material question are

examined separately. For three of the questions a non-rigorous approach is used. That is

the results of these questions are not subjected again to statistical tests. The relationship

between sequential and concurrency question scores has already been presented. In the

first concurrency question the students in both treatment classes did well. Therefore, a

rigorous statistical test approach is used for the next question.

Semaphores (Question 2). The question tested the student on the ability to

create and understand semaphores. Students were asked to compose two tiny tasks that

act as semaphores. The question was worth 10 points. The statistics for the question

given to the two treatment groups are in the table below.

Treatment Groups
Spring 1998 Fall 1998

Sequential * Question 2 Sequential * Question 2
Average 5.79 6.10 6.72 7.29
Median 5.8 6.5 7.1 8
Standard
Deviation

1.567 2.475 2.095 2.552

Variance 2.455 6.128 4.391 6.514

102

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

The indicates the sequential score is a created sequential index. In both treatment

groups the average for the semaphore question is higher than the sequential index

average. In both treatment groups the median for the semaphore question is higher than

the sequential index median. The box plot with the comparison of the sequential index

score and the semaphore question score for the Spring 1998 treatment group is given in

Figure 5.17 below.

Figure 5.17. Question 2 — Semaphores, Spring 1998 Group
(Sequential Index To Question 2 Score Comparison)

10.0-T - r -

9.0- T

Sequential Question 2
Index

Figure 5.17 shows the following about the percentile ranks of the scores:

• 100*, 75*, and 50* percentile scores for the question are higher than for the

sequential index

• 25™ percentile scores are about the same

• 0* percentile score for the question is lower than the index because some

student chose to skip this concurrency material question

The Spring 1998 treatment group performed better on this question than in the sequential

index. The box plot with the comparison of the sequential index score and the semaphore

question score for the Fall 1998 treatment group is given in Figure 5.18 below. Other

103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

than the 75 percentile score, the percentile score is higher for Question 2 than the

corresponding percentile score in the sequential index.

Figure 5.18. Question 2 — Semaphores, Fall 1998 Group
(Sequential Index To Question 2 Score Comparison)

IO.Ot

9.0-

8.0-

7.0-

6 .0-uuouCO 5.0-

4.0-

3.0-

2.0-

1.0-

0.0
Sequential Question 2

Index

The table below shows the results of the normality test and the equal-variance test

for the Spring 1998 treatment group data for the semaphore question. The omnibus test

result indicates that the two distributions (sequential index and concurrency scores) pass

the normality test.

Assumption (Spring 1998 Data)
Test
Value Probability

Decision
(0.05)

Skewness Normality of Residuals -1.6959 0.089910 Accept
Kurtosis Normality of Residuals 0.9281 0.353366 Accept
Omnibus Normality of Residuals 3.7373 0.154330 Accept
Modified-Levene Equal-Variance
Test

8.3977 0.004608 Reject

The Modified-Levene test indicates that sufficient equality of variance does not exist in

the Spring 1998 data. The test selected is the non-parametric Kolmogorov-Smimov test.

The results of the Kolmogorov-Smimov test are given in the table below. The test results

104

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

indicate that the two distributions are not the same. Therefore, the conclusion is that the

students performed better on the semaphore question than on the index.

Hypothesis
Criterion

Value Probability
Decision

(0.05)
D(S) o D(2) 0.264706 0.0391 Reject Ho

The table below shows the results of the normality test and the equal-variance test

for the Fall 1998 treatment group data for the semaphore question. The omnibus test

result indicates that one of the two distributions (sequential index and concurrency

scores) fails the normality test.

Assumption (Fall 1998 Data)
Test
Value Probability

Decision
(0.05)

Skewness Normality of Residuals -2.8677 0.004135 Reject
Kurtosis Normality of Residuals 1.5853 0.112899 Accept
Omnibus Normality of Residuals 10.7369 0.004661 Reject
Modified-Levene Equal-Variance
Test 0.0130 0.909831 Accept

The Modified-Levene test indicates that there is more than sufficient equality of variance

in the Fall 1998 data for a non-parametric test with an equality of variance assumption to

be used. The test selected is the Mann-Whitney U test. The results of the Mann-Whitney

U test are given in the table below. The test result shows that there is no significant

difference in the two distributions and that the semaphore question distribution is

significantly higher than sequential index score.

Alternative
Hypothesis Test Value Probability

Decision
(0.05)

D(S) o D(2) 1.2919 0.196389 Accept Ho

D(S) < D(2) 1.3172 0.906121 Accept Ho

105

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Reading Code and Determining Output (Question 4). The question tested the

students' ability to read code and show the results of the code. The question was worth

12 point. However, the question was sufficiently difficult that it was improbable to get

full credit. The question was in three parts:

• Read the code and show the output (6 points)

• Given the code is changed, what is the output (4 points)

• A variable is outside the task, state what the variable is called (2 points)

The score break out for the question is given in the table. A score of 4 and up

indicates either (1) the student has recognized a shared memory variable and can predict

some of the output or (2) can show most of the output. A score of 7 and up indicates the

ability to read code and show the output.

Score Spring 1998 Fall 1998

Average 3.27 3.76

Median 2.5 4

7 and up 6 3

4,5, and 6 17 8

3 or below 19 8

Zero score 10 2

7 and up percentage 14.39 15.79

4 and up percentage 54.76 57.89

The histogram of the Spring 1998 treatment group scores on the reading code question is

given in Figure 5.19 below. The histogram of the Fall 1998 treatment group scores on

the question is given in Figure 5.20 below.

106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Figure 5.19. Histogram of Reading Code Question Scores
For Spring 1998 Treatment Group

12.0-,

S
3O
U

9.0 10.0

3O
y

Figure 5.20. Histogram of Read Code Question Scores
For Fall 1998 Treatment Group

6 .0 t

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0

107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Message Passing (Question 7). The question tests the student on the ability to

compose two tiny tasks — one task to send a message and one task to receive a message.

The question is worth 10 points. A score of 4 points or less indicates that the student had

insufficient skills to write the syntax. Scores above 5 indicate at least some

comprehension of solving the question. The score break out for the question is given in

the table. The “5 and up percentage” shows the percentage of students attempting the

problem (non-zero score) that attained a score of 5 and above.

Score Spring 1998 Fall 1998

Average 2.98 2.52

Median 3 2

7 and up 5 1

5 and 6 4 2

4 or below 34 16

Zero score 9 2

5 and up percentage 20.93 15.79

The histogram of the Spring 1998 treatment group scores on the message passing

question is given in Figure 5.21 below. The histogram of the Fall 1998 treatment group

scores is given in Figure 5.22 below.

108

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Figure 5.21. Histogram of Message Passing Question Scores
For Spring 1998 Treatment Group

s
3o
U

— 1----—r
0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0

Figure 5.22. Histogram of Message Passing Question Scores
For Fall 1998 Treatment Group

B
3e

T
9 [.

T
1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0

109

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Shared Memory (Question 8). The question tests the student on the ability to

recall information about shared memory (4 points) and the ability to compose one tiny

task using shared memory (5 points). The question was worth 9 points. A score of 3 and

4 points indicated that a student could discuss the subject. A score of 5 and 6 indicates

additional knowledge of coding syntax. A score of 7 and up indicates subject knowledge.

The score break out for the question is given in the table below. The discussion

percentage shows the percentage of those students attempting the question (non-zero

score) who can discuss shared memory. The “7 and up percentage” show the percentage

of students attempting the question that attained a score of 7 and up.

Score Spring 1998 Fall 1998

Average 2.67 4.19

Median 2.5 4

7 and up 2 5

5 and 6 8 5

3 and 4 16 5

1 and 2 13 2

Zero score 13 4

Discussion percentage
(3 and up)

66.67 88.24

7 and up percentage 5.13 29.41

The histogram of the Spring 1998 treatment group scores on the shared memory question

is given in Figure 5.23 below. The histogram of the Fall 1998 treatment group scores on

the question is given in Figure 5.24 below.

Conclusion. Among the same students, significant differences were found

between final exam scores on sequential material and final exam scores on concurrency

material. Students do significantly better on the sequential material. Students are

learning concurrent material (some material was learned very well); however, the

concurrency test scores are lower.
110

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Figure 5.23. Histogram of Shared Memory Question Scores
For Spring 1998 Treatment Group

as©
U

13.0
12.0-

10.0

Figure 5.24. Histogram of Shared Memory Question Scores
For Fall 1998 Treatment Group

sso
U

6.0-.

I
V

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0

111

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

5.5 Comparison of Student Performance on a Large Project

The large project in the Introduction To Computing course was the last project,

Project 9. In this project the students were asked to create a small database and to

provide a rudimentary set of capabilities. All groups were given a crude character based

menu interface to modify. The control group class did the project using all sequential

methodology. The treatment group classes did the project using concurrent methodology

including an independent database writer, rollback and commit of data, plus semaphores

to control shared memory access. The students were given three weeks to complete the

project, plus one week extra time, if necessary (with a penalty assessed).

The overall statistics for the Project 9 scores are given below in the table. These

Project 9 scores include zero grades. The median is above the average in all three groups.

Zero Scores
Included

Control Group Treatment Groups
Fall 1997 Spring 1998 Fall 1998

Average 25.83 29.02 30.76
Median 32 32.5 31
Standard
Deviation 13.519 8.519 6.024

Variance 182.754 72.568 36.290
Zero Scores 3 1 0

In the Fall 1997 group and in the Spring 1998 group, the averages are lower in part due to

zero scores (students did not turn in the project). The overall statistics for the Project 9

scores with zero scores excluded are given below in the next table.

Non-Zero
Statistics

Control Group Treatment Groups
Fall 1997 Spring 1998 Fall 1998

Average 29.52 29.59 30.76
Median 35 33 31
Standard
Deviation 9.786 7.540 6.024

Variance 95.762 56.847 36.290

112

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Again, the median is above the average in all three groups. The average scores are much

closer together than the median scores; the difference between the minimum and

maximum average score is under 1.3. The highest median is in the control group. The

variance is decreasing with each succeeding class. The box plot o f the Project 9 scores is

given in Figure 5.25.

Figure 5.25. Project Nine Scores

15.0-

to.o-

5.0-

0 .0-1 ! 1 1 1
Fall 1997 Spring 1998 Fall 1998

Semester

The box plot graphically shows the decrease in variance with each succeeding class. The

figure shows the following about the percentile ranks of the Project 9 scores:

• 100th percentile scores are in the same range (39 to 40)

• 75th percentile scores are in the same range (36 to 37)

• Median scores decrease over a 4 point range

• 25th percentile scores increase with each succeeding class

• 0th percentile scores increase with each succeeding class

The greatest change in scores is in the 25th and 0th percentiles. The scores of the lesser

performing students increase with each succeeding class.

The table below shows the results of the normality tests (for all three groups

together) and the equal-variance test on the combined groups. The omnibus test result

113

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

indicates that two or more of the three groups are not normal. The Modified-Levene test

indicates that there is sufficient equality uf variance for a non-parametric test with an

equality of variance assumption to be used (even with the largest variance 2.6 times the

smallest variance).

Assumption
Test
Value Probability

Decision
(0.05)

Skewness Normality of Residuals -2.4218 0.015445 Reject
Kurtosis Normality of Residuals -2.5610 0.010436 Reject
Omnibus Normality of Residuals 12.4239 0.002005 Reject
Modified-Levene Equal-Variance
Test 0.9819 0.378593 Accept

The non-parametric statistical test selected is the Kruskal-Wallis One-Way

ANOVA on Ranks. The test results are given in the following table.

Method
Chi-Square

(H) Probability
Decision

(0.05)
Corrected for Ties 0.4230784 0.809338 Accept Ho

The "Accept Ho" decision means the following: the three groups (both control and

treatment) are not significantly different when tested around their medians.

The histograms of the Project 9 scores are given in the next three figures: Figure

5.26 for the Fall 1997 class, Figure 5.27 for the Spring 1998 class, and Figure 5.28 for the

Fall 1998 class. Zero scores are included in the histograms.

114

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Figure 5.26. Histogram of Project Nine Scores, Fall 1997 Control Group
6.O-1

as©
U

4X) ilo 12.0 16.0 20.0 24.0 28.0 32.0 36.0 40.0

Figure 5.27. Histogram of Project Nine Scores, Spring 1998 Treatment Group
10.0-1

9.0-

sso
w

4.0 8.0 12.0 16.0 20.0 24.0 28.0 32.0 36.0 40.0

115

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Figure 5.28. Histogram of Project Nine Scores, Fall 1998 Treatment Group
6.0-t

0.0 4.0 8.0 12.0 16.0 20.0 24.0 28.0 32.0 36.0 40.0

The Fall 1997 group and the Fall 1998 group distributions appear to be bimodal.

Conclusion. Significant differences in the large project scores were not found

(using either sequential or concurrency methodologies). Significant differences between

the groups were not found. The treatment groups had a smaller variance of scores than

the control group. The smaller variance resulted from lowerr performing students earning

higher project scores.

116

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

5.6 Findings for the Compilation of Concurrency and Sequential Programs

Compilations. All program compilations were recorded. This included both

sequential and concurrency programs. Program compilations had various outcomes;

these outcomes included the following:

1. Typographical error(s) in the compilation command line — the program to be

compiled is not found

2. Program compiles with errors — the program contains one or syntax errors and

warning messages

3. Program compiles with out error -- the program contains zero syntactic errors

and warnings detected by the compiler (a clean compile)

Although type 1 compilations are recorded, these compiles were not included in the

statistics. The compiler did not access the program for the type 1 compilations. Students

often compile programs during a project that are unrelated to the project, except that the

student is searching for some information in the compiled program. These compilations

are not included in the statistics presented in this document.

One of the measures of the work required to perform a project was the number of

compilations. Different students had different methods of solving compilation errors and

warnings. One type of student behavior was to solve one or two compilation errors, and

then recompile the program. Another type of student behavior was to solve all or most

compilation errors, and then recompile the program. Thus, compilation counts alone

were not a good measure of work. However, the ratio of the number of compilations

between two projects would be a more consistent measure of work. For example, project

five required twice the compilations of project three is a measure of relative work.

As previously stated in Subsection 5.2.2, there were five projects given before

concurrency was introduced. The first project was very simple, correct some syntax

errors and change an existing program. The first project did not include original

programming and was not included in the experiment. Projects two, three, four, and five

were included in the experiment. The large project was the last project, Project 9. The

measure of relative work studied (by compilations) was as follows:

117

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Compilations for project nine (P9)

Ratio = --------------------------------- , per student

Compilations for projects two through five (P2-5)

Projects two through five were performed over a five week period. The period was

longer if project five was completed late. Project 9 was performed over a three week

period. Thus, the "ratio" studied was derived from eight weeks of student compilation

activity.

The overall statistics for the compilation "ratio", (P9 / P2-5) are given below in

the table. Students had to perform these five projects to be included in this comparison.

Control Group Treatment Groups
Fall 1997 Spring 1998 Fall 1998

Average 0.84 0.99 1.07
Median 0.68 0.76 0.75
Standard
Deviation

0.603 0.540 0.807

Variance 0.363 0.291 0.651

Count 18 43 18

The average ratio is above the median for all groups. The averages for the treatment

groups are above the average for the control group. The medians for the treatment groups

are above the median for the control group. The box plot for the compilation "ratio" is

given in Figure 5.29. The box plot graphically shows an increase in the compilation

"ratio" for the treatment groups in the 75*, 50th, and 25th percentile ratios over the control

group. The 0th percentile compilation "ratios" for both the control and treatment groups

are about the same.

118

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

«
06

Figure 5.29. Compilation Ratio for Projects (P9 / P2-5)
3.0-.

2.5-

2.0-

1.5-

1.0 -

0.5-

0 . 0 '

T X 1
I----------------1---------------- 1------

Fall 1997 Spring 1998 Fall 1998

Semester

The table below shows the results of the normality tests (for all three groups together) and

the equal-variance test on the combined groups. The omnibus test result indicates that one or

more of the three groups are not normal. The Modified-Levene test indicates that there is more

than sufficient equality of variance for a non-parametric test with an equality of variance

assumption to be used. The non-parametric statistical test selected is the Kruskal-Wallis One-

Way ANOVA on Ranks.

Assumption
Test
Value Probability

Decision
(0.05)

Skewness Normality of Residuals 3.2950 0.000984 Reject
Kurtosis Normality of Residuals 0.7032 0.481923 Accept
Omnibus Normality of Residuals 11.3513 0.003428 Reject
Modified-Levene Equal-Variance
Test 0.3475 0.707582 Accept

The results o f the Kruskal-Wallis One-Way ANOVA on Ranks test are given below.

Method
Chi-Square

(H) Probability
Decision

(0.05)
Not Corrected for Ties 1.593634 0.450761 Accept Ho

119

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

20

www.manaraa.com

The "Accept Ho" decision means the following: the three groups (both control and

treatment) are not significantly different when tested around their medians.

Duplicate values do not exist within any single group; thus, the statistic is not corrected

for ties. Significant differences in the compilation "ratio" are not found, even though the

treatment group students used concurrency methodology in Project 9.

Compilation Errors. Compressing all the variations in error messages into a

smaller number of distinct error messages is not an exact science. The method used to

reduce the total variation of error and warning messages is as follows:

• Replace variable names with a representative symbol (such as "token")

• Replace numbers with a representative symbol (such as the value "99")

Thus, the error message ""class_sum" is undefined' is translated to ""token" is

undefined'. The error message ""=" should be remains unchanged.

Replacing only variable names and numbers with representative symbols results

in some error messages being classed as distinct even though there is very little variation

in the error message. For example, there are 16 distinct variations of the error message

"invalid operand types for operator". Each operator is classed as a distinct error

message. Examples include the following:

invalid operand types for operator "<="

invalid operand types for operator "="

invalid operand types for operator ">="

Another example, there are numerous distinct variations of the error message "incorrect

spelling o f keyword'. There is one variation of the message for each keyword. Examples

include the following:

incorrect spelling o f keyword "FUNCTION"

incorrect spelling o f keyword "PACKAGE"

incorrect spelling o f keyword "PROCEDURE"

In these examples distinct error messages are clearly not unique.

Further, the software that translates the variable names and numbers is not perfect.

For example, the error message "functions can only have "IN” parameters" should not

120

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

have been translated to "functions can only have "token”parameters". However, for the

purpose of creating distinct errors and tracking their occurrences, this is not a problem.

Further, when in doubt, error messages that could be compressed into a single message

are not. For example, the error message of the type "incorrect use o f "Cars’"' can apply

to more than just packages in Ada. The seven variations of this error message are not

compressed into a single distinct error.

Distinct E rror Messages. The statistics for the number of distinct error messages

in Project 9 for all three groups is given below in the table.

Control Group Treatment Groups
Fall 1997 Spring 1998 Fall 1998

Average 39.25 48.74 46.89
Median 36 47 43.5
Standard
Deviation

15.256 15.471 20.370

Variance 232.733 239.338 414.928
Count 16 43 18

The average and median for the control group are lower than the average and median for

the two treatment groups. The box plot for the distinct error messages is given below in

Figure 5.30. The increase in the average and median for the treatment groups is the

addition of distinct error messages dealing solely with concurrent syntax constructs in

Ada.

121

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Figure 5.30. Distinct E rror Messages
90.0-j

80.0-

70.0-

60.0-

g 50.0-
©

W 40.0-

30.0-

20 .0 -

10.0-

0 .0 -------------------------- 1------------------------ 1------------------------ 1 i
Fall 1997 Spring 1998 Fall 1998

Semester

On average, the treatment groups saw seven to nine more syntax errors and warnings due

to using concurrency. For the median, the treatment groups saw seven to 11 more syntax

errors and warnings due to using concurrency. The box plot graphically shows an

increase in the distinct error messages in the treatment groups in the 100th, 75th, 50th, and

25th percentile ratios over the control group. The 0th percentile for both the control and

treatment groups are about the same.

The table below shows the results of the normality tests (for all three groups

together) and the equal-variance test on the combined groups. The omnibus test result

indicates that all three groups may be normal. The Modified-Levene test indicates that

there is more than sufficient equality of variance for a non-parametric test with an

equality of variance assumption to be used.

Assumption
Test
Value Probability

Decision
(0.05)

Skewness Normality of Residuals 0.9225 0.356256 Accept
Kurtosis Normality of Residuals -0.8294 0.406876 Accept
Omnibus Normality of Residuals 1.5390 0.463254 Accept
Modified-Levene Equal-Variance
Test 0.6643 0.517662 Accept

122

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

The non-parametric statistical test selected is, again, the Kruskal-Wallis One-Way

ANOVA on Ranks. The test results are given in the following table.

Method
Chi-Square

(H) Probability
Decision

(0.05)
Corrected for Ties 3.741726 0.153991 Accept Ho

The "Accept Ho" decision means the following: the three groups (both control and

treatment) are not significantly different when tested around their medians. Even

with the known increase in distinct error messages due to the use of concurrency in the

treatment groups, significant differences in the control and treatment groups are not

found.

E rror Ratio (Total Errors / Distinct Errors). Another way to examine

compilation errors is to compare the ratio of total errors to distinct errors. This ratio is

measure of the number of times the "average" error message occurs. The statistics for the

ratio of total errors to distinct errors in Project 9 for all three groups is given below in the

table. The statistics for the Fall 1998 treatment group are skewed by a single outlier.

Control Group Treatment Groups
Fall 1997 Spring 1998 Fall 1998

Average 1.02 7.53 9.18
Median 6.74 6.69 7.36
Standard
Deviation 2.754 3.377 6.683

Variance 7.584 11.404 44.664
Count 16 43 18

The averages for the control group and the Spring 1998 treatment group are within 0.5.

The medians for the control group and the Spring 1998 treatment group are very close.

The box plot for the three groups is given in Figure 5.31. One outlier in the Fall 1998

treatment group is offthe scale at 28. Both treatment groups have outliers.

123

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Figure 5 .31. E rror Ratio (Total Errors / Distinct Errors)

cs

18.0-

16.0-

14.0-

12.0-

10.0-

8 .0-

6 .0-

4.0-

2 .0-

0 .0 -

X T

I

x

— i----------------- 1--------------- 1—
Fall 1997 Spring 1998 Fall 1998

Semester

The 75th, 50th, 25th, and 0th percentiles are similar in all three groups (both control and

treatment). Differences in the three groups appear in the 100th percentile error ratio.

The table below shows the results of the normality tests (for all three groups

together) and the equal-variance test on the error ratio for the combined groups. The

omnibus test result indicates that two or more groups are not normal. The Modified-

Levene test indicates that it is doubtful that sufficient equality of variance exists.

However, a severe outlier exists in the Fall 1998 treatment group, and two outliers exist

in the Spring 1998 treatment group. Outliers lower Modified-Levene test values --

ignoring outliers means that a higher equality of variance is present. This can be seen in

the box plot; the 75th, 50th, 25th, and 0th percentiles are similar in all three groups.

Therefore, sufficient equality of variance is assumed, and a non-parametric test with an

equality of variance assumption to be used.

124

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Assumption
Test
Value Probability

Decision
(0.05)

Skewness Normality of Residuals 5.2824 0.000000 Reject
Kurtosis Normality of Residuals 4.1335 0.000036 Reject
Omnibus Normality of Residuals 44.9899 0.000000 Reject
Modified-Levene Equal-Variance
Test 2.2280 0.114925 Accept

The non-parametric statistical test selected is the Kruskal-Wallis One-Way ANOVA on

Ranks. The test results are given in the following table.

Method
Chi-Square

(H) Probability
Decision

(0.05)
Not Corrected for Ties 0.3133233 0.854993 Accept Ho

The "Accept Ho" decision means the following: the three groups (both control and

treatment) are not significantly different when tested around their medians. The

very high probability is significant, it implies that compilation error resolution is not

affected by concurrency. The ratio of total errors to distinct errors appears constant

among all three distributions at and below the 75th percentile.

The error ratio distribution histograms for each group are given in Figures 5.32

through Figure 5.34. The Fall 1998 treatment group has the flattest distribution. The

Spring 1998 treatment has the distribution most resembling a normal distribution. With

the exception of the outliers (between 14.0 and 16.0) in the Spring 1998 treatment group,

all three groups have very similar lower bounds (around 3.0), modes (around 6.0) and

upper bounds (between 11.0 and 13.0).

125

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Figure 532 . Histogram of E rror Ratio (Total Errors / Distinct Errors)
Fall 1997 Control Group

4.0t

0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0

Figure 5.33. Histogram of Error Ratio (Total Errors / Distinct Errors)
Spring 1998 Treatment Group

8.0t

0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0

126

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Figure 5.34. Histogram of Error Ratio (Total Errors / Distinct Errors)
Fall 1998 Treatment Group

4.<h

Conclusions. Significant differences in the compilation "ratio" were not found,

even though the treatment group students used concurrency methodology in Project 9.

Therefore, significant differences in comparing the relative amount of work for the

sequential and concurrent version of the large project were not found.

Using concurrency increased the number of distinct error messages. However, the

ratio of total errors to distinct errors did not change significantly with the introduction of

concurrency compilation errors and warnings. The ratio of total errors to distinct errors

appears constant among all three distributions at and below the 75,h percentile.

127

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

5.7 Correlation of Student Characteristics to Student Performance

The correlations between several aspects of the experiment are presented in the

table below. The sequential material in the correlation table is the six sequential

questions given on the final exam to all three groups. The concurrency material in the

correlation table is the four concurrency questions given to the two treatment groups.

The means concurrency material only. The concurrency material column contains the

correlation for the treatment groups only. The control group did not receive concurrency

material. The "Project 9" column contains mixed comparisons ~ some include all three

groups (like age) and concurrent material includes the two treatment groups.

Male
Female Age Year

Sequent.
Material

Concur.
Material *

Project 9

M ale/
Female

1.000000 0.125079 0.039078 0.030688 -0.106056 -0.094576

Age 1.000000 0.539450 -0.000125 0.093666 0.156081
Year 1.000000 0.119484 0.153045 0.104913
Sequential
Material

1.000000 0.682322 0.362781

Concurrent
Material

1.000000 0.396738 *

Project 9 1.000000 *

The male / female, age, year, and sequential material correlations contain data from all

three groups (both control and treatment).

The correlations are computed using the Spearman's rho (row-wise deletion)

technique. The Spearman's rho correlation coefficient measures the monotonic

association between two variables in terms of ranks. The Spearman's rho is a non-

parametric technique. The technique works well with data that has the following

characteristics:

• Non-normal

• Non-linear relationships

• Unequal variance between groups compared

128

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Male / Female Comparison. The negative signs in the male / female row

indicate that female students did better than male students. This is true for the

concurrency material (for the treatment groups). It is also true for project nine (for all

three groups). These correlations are low. The final exam sequential material scores for

females and males are given in the table below. The sequential material averages for both

sexes are very close. The medians for both sexes are very close. The standard deviations

for the two groups are also very close. There are almost twice as many males as females

in the comparison.

Sequential
Material Female (0) Male (1)
Average 33.29 33.82
Median 34 34.5
Standard
Deviation 10.363 10.564

Variance 107.387 111.591
Count 35 62

The box plot in Figure 5.35 shows the final exam sequential material scores. The 100th

and 0th percentile scores for females are a few points less. Differences in the two sexes

performance on final exam sequential material are small.

129

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Figure 535. Final Exam Questions — Sequential Material,
Male / Female Comparison

60.0-]
55.0-
50.0-
45.0-
40.0-

u 35.0-
S 30.0-

25.0-
20 .0-

15.0-
10.0 -

5.0-
0.0 1 1 1

Female Male

The final exam concurrency material scores for females and males are given in the

table below. The female average is about 1.5 points higher than the male average. The

female median is 1.5 points higher than the male median. The standard deviations for the

two groups are also close (within 0.4 out of 7.3). Again, there are twice as many males as

females in the comparison.

Concurrency
Material Female (0) Male (1)
Average 16.88 15.29
Median 16.5 15
Standard
Deviation 6.943 7.329

Variance 48.201 53.708
Count 24 49

The box plot in Figure 5.36 shows the final exam concurrency material scores for females

and males. Females have higher percentile rank scores (100*\ 75th, and so forth) than the

males. The maximum differences are in the lower percentile rank scores.

130

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Figure 5.36. Final Exam Questions — Concurrency Material,
Male / Female Comparison

4)tm©wc«

40.0-j

35.0-

30.0-

25.0-

20 .0-

15.0-

10.0-

5.0-

0.0-■

T
Female

T

Male

The non-zero project nine scores for the two treatment groups (concurrency

material) are given in the table below. The female average is about 1.6 higher than the

male average. The female median is 3.0 higher than the male median. Again, there are

twice as many males as females in the comparison.

Concurrency
Project Nine Female (0) Male (1)

Average 31.04 29.38
Median 34 31
Standard
Deviation 7.544 6.896

Variance 56.911 47.559
Count 24 48

The box plot in Figure 5.37 is the project nine scores for the two treatment groups. The

female scores are higher for the 75Ul, 50th, and 25th percentiles than the male scores. The

female median is almost the 75th percentile score for the males.

131

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Figure 53 1 . Concurrency Material Project Nine Scores,
Male / Female Comparison

40.0-,

35.0-

30.0-

25.0-
uew

cm
20.0-

15.0-

10.0-

5.0-

0.0
Female Male

College Year. There are low positive correlations between college year and

performance in sequential material, concurrency material, and project nine scores. The

final exam sequential material scores are given in the table below. The freshmen had the

lowest average and the upper classes (juniors, senior, and graduate students) had the

highest average (with a range of about 4.3 points). The sophomore students had the

lowest median and the upper classes had the highest median (with a range of 3.5 points).

The number of freshmen in the comparison is almost triple the combined sophomore and

upper classes population.

Sequential
Material Freshmen (1) Sophomore (2)

Upper Classes
(3,4,5)

Average 32.89 34.93 37.20
Median 34 33 36.5
Standard
Deviation 10.322 12.487 7.997

Variance 106.543 155.918 63.956
Count 73 14 10

132

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

The box plot of the final exam sequential material scores by college year is given in

Figure 5.38.

Figure 5.38. Final Exam Questions — Sequential Material,
College Year Comparison

60.0-1
55.0-
50.0-
45.0-
40.0-

« 35.0-u
3 30.0-

25.0-
20.0-

15.0-
10 .0 -

5.0-
0 .0 1 1 1 1

Freshmen Sophomore Upper
Classes

The upper classes category has higher median, 25th and 0th percentile scores than the other

two college year classifications. The larger variance in the sophomore scores is likely

due to the smaller number of sophomore students as compared to the freshmen students.

The highest and lowest scores are in the freshmen students.

The final exam concurrency material scores for different college years are given in

the table below. The freshmen average and median are lower than the averages and

medians for the sophomore and other upper classes students. The sophomore average and

median are within one point of the upper classes category average and median. There are

almost four times more freshmen than sophomore and upper class students.

133

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Concurrency
Material Freshmen (1) Sophomore (2)

Upper Classes
(3,4,5)

Average 15.38 17.20 18
Median 15 17 18
Standard
Deviation 7.424 7.421 3

Variance 55.117 55.067 9
Count 58 10 5

The box plot for the final exam concurrency questions by college year comparison is

given in Figure 5.39.

Figure 5.39. Final Exam Questions — Concurrency Material,
College Year Comparison

40.0-1

35.0-

30.0-

25.0-
9iUou

CO
20 .0 -

15.0-

10.0 -

5.0-

0.0
Freshmen Sophomore Upper

Classes

The freshmen 75th, 50th, 25th and 0th percentile scores are the lowest. Range of score is

highest for the freshmen. The highest scores are freshmen scores. The box plot shows

the range of score is decreasing with college year. There are only five upper class

category students in the comparison.

The concurrency version of project nine scores for the two treatment groups are

given in the table below. The averages for all three classifications are very close (within

about 0.3 out of about 30). The freshmen have the highest median and the sophomores

the lowest median. This comparison does not include the control group project nine

134

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

scores. The correlation table above does include the control group project nine scores as

part of the correlation computation.

Concurrency
Project Nine Freshmen (1) Sophomore (2)

Upper Classes
(3,4,5)

Average 29.91 29.90 30.20
Median 33 28 31
Standard
Deviation 7.281 6.641 7.463

Variance 53.010 44.100 55.700
Count 57 10 5

The box plot for the concurrency material project nine scores by college year comparison

is given in Figure 5.40. It appears that the freshmen students are not disadvantaged in

project nine scores on concurrency material:

• Freshmen have the same average (even with the lowest 0th percentile scores)

• Freshmen have the highest median score.

• The interquartile range (IQR) for the freshmen class is within the range of the

IQR of the sophomore and other category.

Overall freshmen are performing as well on the concurrency version of project nine as the

sophomore and upper classes students.

135

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Figure 5.40. Concurrency Material Project Nine Scores,
College Year Comparison

40.0-1

VI

15.0-

10.0 -

5.0-

0.0-1 1 1 1 1
Freshmen Sophomore Upper

Classes

Summary. A correlation between -0.20 and +0.20 indicates a low correlation.

The following low correlations were found:

• Female students doing somewhat better on concurrency questions than males

• Female students doing somewhat better on the last project, Project 9, than

males

• Freshmen students doing somewhat worse on final exam question scores (for

both sequential and concurrency material) than other students

The correlation between sequential material performance on the final exam and

concurrency performance on the final exam is moderate at 0.68. This correlation implies

sequential material performance is a positive indicator of concurrency material

performance. However, the correlation is not high (above 0.80). The correlations

between project nine and either sequential material or concurrency material are similar.

The correlation between the last project, project nine, and the final exam sequential

material question scores is moderate at 0.36. The correlation between the last project and

final exam concurrency material question scores is also moderate at 0.39.

136

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

5.8 Validity and Sensitivity Check.

In general the criterion for validity is as follows — the data used should be reliable

and representative. The purpose of this subsection is to examine threats to the data to

show that it is reliable. Threats to validity have been minimized. Second, the judgement

of "is the data representative" is left to the reader. Data is presented in this subsection

and in the appendices to support the reader making the judgement.

5.8.1 Internal Validity

Huck [Huck, 1974] identified in his text seven different sources of internal

validity threats in an experiment. Five of the sources of concern were addressed in this

experiment. These five threats and a quick summary of their defense were as follows:

1. Self-selection — no defense, comparability of the groups check done

2. Mortality — no defense, sufficient students left in all three groups

3. Maturation — no defense, comparability of the groups check done

4. History — some defense, two students were removed from the experiment

5. Instrumentation - some defense, graders were not investigators in the

experiment

Huck identified two additional sources of internal validity threats that are applicable only

to other pseudo-experimental designs.

Self-Selection. The self-selection threat meant that the subjects of the

experiment, the students, selected themselves for the individual class. Subjects were not

randomly selected from a pool of students. Once in the class, each student had to pass a

series of criteria to be included in the experiment. Subsection 5.1, titled Student

Population, summarized the criteria for including a student in the experiment, and

addressed the characteristics of the students that passed the criteria.

The self-selection of students had the potential to be the greatest threat. This was

because each subject group could be different, possibly very different. It was a given in

this experiment that each group was going to be different. However, techniques

(controls) were used that minimized the impact of these differences. One of the simplest

and most effective techniques was to calibrate each group against the others by providing

137

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

identical treatments and observing the result. This was exactly what was done during the

first eight weeks of each semester. All groups received the same material during the first

eight weeks of the course. The relative performance of each group was calibrated against

the same measure. Thus, each group's performance during the period when different

treatments are applied, the second eight weeks in the course, could be adjusted for group

differences (if it had been necessary).

Subsection 5.2, titled Comparability of the Groups, addressed the comparability of

the groups. Significant differences in the mid-term scores and the project scores (projects

two through five) were not found among any of the groups. The control group and two

treatment groups were found to be comparable for the purpose of this experiment.

In summary, no control was used in the experiment for self-selection of students.

Fortunately, it was not necessary.

Mortality. Mortality deals with the loss of subjects from any of the groups. The

experiment could not be defended against mortality — students could withdraw from the

experiment at any time (either by course withdrawal or change of status, like to audit).

Fortunately, enough students remained in each class for a statistically valid sample size to

exist at the end of each semester. Students were required to take and successfully

complete CSci 51 to advance to the other computer science courses. This alone

"appeared" to provide sufficient motivation for students to complete the course (and

provide a statistically valid sample size). The table below gives the number of student

withdrawals by semester.

Category
Control
Group Treatment Groups Totals

Semester Fall 1997 Spring 1998 Fall 1998
Withdrawal 5 14 11 30

Percentage 14.3 18.4 28.9 21.6

There were several different reasons given by students for withdrawal from the course.

The following reasons were given by 24 of the students.

138

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

• Illness

• Change of major

• Overall poor grades

• Low mid-term grade only

• Unwilling to spend the time necessary

• Lack of time due to family and/or work

There were also three students with special cases that included the following:

• Student's fiancee had a serious illness and was near death

• Student athlete's practice requirements interfered with needed homework time

• Student completed just enough of the class to take other classes in the business

school

Three students gave no reason at all.

Maturation. Maturation deals with the subjects growing maturity (both

psychological and biological). The impact of this threat was that any one group may be

more mature than another group. This could have impacted the results of the experiment.

One of the simplest and most effective techniques was to calibrate each group against the

others by providing identical instruction and observing the result. This was done as part

of the experiment.

As previously stated, Subsection 5.2, titled Comparability of the Groups,

addressed the comparability of the groups. Significant differences in the mid-term scores

and the project scores (projects two through five) were not found among any of the

groups. The control group and two treatment groups were found to be comparable for the

purpose of this experiment.

In summary, no control was used in the experiment for maturation of students. It

was not necessary. The period between when the mid-term exam was given and the end

of the semester was always just eight weeks.

History. History deals with external non-experimental events affecting a

student's performance over the period of the experiment A significant emotional event

will impact a student's performance. Controls were used to defend the experiment from

history threats. Unfortunately, the controls used in the experiment defend only against

139

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

known external non-experimental events. The important aspect of history threats to an

experiment is that if a threat goes unobserved, a subject's performance is affected by an

influence outside the experiment and may be attributed to the experimental treatment.

History threats were addressed in two ways.

The first defense mechanism was to remove the affected student from the

experiment. Student initiated withdrawal from the class was addressed under mortality.

When the student was unselected by the instructor from the experiment due to an event,

that is the history defense mechanism in action. During the experiment, this happened

only twice during the Spring 1998 semester, treatment group one. These two students

were included in the removed student category.

The second defense mechanism was to excuse the student from class work and

grade recording for a specified period. Selected projects were to be made-up, and were

graded as on-time. For example, during the control group phase, the grandmother of a

student died. This student was excused from the course for three class periods. The

student's makeup work was not graded. The overall work was not affected. Another

example, during the Fall 1998 semester, second treatment group, a student's mother died.

The student was excused from the course for three class periods. The student's mid-term

score was affected. However, the projects and final exam work were not impacted.

Instrumentation. Instrumentation deals with the problems evaluating dependent

variables. The instruments in this experiment included the instructor, the teaching

assistant, and a paid grader. For example, differences between the control group and the

experimental groups could be attributed to the instruments unless mechanisms were

carefully built-in to the conduct of the experiment. The university selected the teaching

assistant and the paid grader (not by the instructor). The potential for a grader learning to

grade on the job did not exist. All graders had at least one semester's experience grading

both exams and projects prior to their service in the experiment.

In the experiment, the same instructor was used for all groups. The same lab

instructor is used for all groups, the teaching assistant.

140

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

For the purpose of the experiment, only the teaching assistant graded the mid-term

exams and final exams for all groups. The dissertation committee dictated this action.

The instructor prepared the grading criteria. The teaching assistant graded the exams.

Only the teaching assistant graded the projects for the Fall 1997 and Fall 1998

semesters. The teaching assistant and a paid grader graded the projects for the Spring

1998 semester. The paid grader was a college instructor at the University of Maryland,

Baltimore campus. Selection of grader was entry sequence. About half the pile of

project papers went to the teaching assistant and the other half to the grader. The first

students to hand in a project had their projects at the bottom of the pile. The last students

to hand in the project during class had their projects at the top of the pile (entry

sequence). The prior class instructor, Professor Feldman, created the project grading

criteria over six months before the experiment began. The prior class instructor also

taught the teaching assistant how to grade the projects. The teaching assistant taught the

paid grader how to grade the projects. The instructor taught the teaching assistant

sufficient concurrent material such that the teaching assistant could understand and grade

the concurrent projects.

In summary, sufficient controls were in place for instrumentation threats.

5.8.2 Generalization of the Experimental Results

The purpose of the subsection of the document is to explain how the results of this

experiment can be generalized to a broader student population. Some of the

characteristics of the source population for the experiment were as follows:

• Students enrolled at George Washington University (GWU)

• Mostly students enrolled in the School of Engineering and Applied Science

(SEAS)

• Students without prior college computer science and computer programming

experience

The source population was the pool of students available to enroll in the CS1 class at

GWU. Some of the population characteristics in the experiment were as follows:

141

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

• Mostly students were freshmen (73 of 97 students) or sophomores (14 of 97

students)

• Many (at least 23 of 97) were in their first semester of college (hence a college

grade point average was not available)

• Many (at least 48 of 97) were in their second semester of college

The population of the experiment was the students enrolled in the Introduction to

Computing class that met the eligibility criteria — students without prior college computer

science and computer programming experience. Further population characteristics in the

experiment are given in the table below.

Novice
Category

Control
Group Treatment Groups Totals

Foreign
Student

3 2 3 8

SSN Student 21 50 18 89

Male 13 35 14 62

Female 11 17 7 35

Novice Total 24 52 21 97

Semester Fall 1997 Spring 1998 Fall 1998

SSN students have a social security number (SSN). Foreign students do not have a social

security number. You do not have to be a citizen of the United States to have a social

security number. Thus, the SSN student designation does not differentiate between

United States citizens and resident aliens (with SSNs).

Additional population characteristics in the experiment are given below. These

characteristics are repeated from other subsections of the document (dissertation).

142

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Statistic
Control
Group Treatment Groups

Semester Fall 1997 Spring 1998 Fall 1998
Age

Average 19.5 18.75 21.1

Median 19 18.5 19

Year in College
Average 1.75 1.08 1.90

Median 1 1 2

Required Class
Average 0.833 0.923 0.857

Median 1 1 1

There are two methods of generalizing the results of this experiment to a target

population:

1. Compare the experimental population to a target population

2. Repeat the experiment with a different student population

The term target population refers to a larger, more general, population, with the

implication that the results of this experiment apply to the target population. For

example, the target population could be college freshman without prior college computer

science and computer programming experience. Another target population could be

college undergraduates without prior college computer science and computer

programming experience.

Many characteristics of the student population in this experiment have been

collected (such as sex, age, college year, class required, entry skill level upon entering the

class, and social security number designation). These characteristics can be compared

against the characteristics of the intended target population. Given that significant

differences in experimental and target populations do not exist, the results of the

experiment can be generalized to a specific target population. This is outside the scope of

this experiment. The GWU undergraduate student population should not be considered

143

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

typical of student populations for Continental U.S. colleges and universities until it is

demonstrated.

The experiment can be repeated in different settings. The experiment could be

repeated at different colleges and universities that have the potential to draw distinctly

different student populations with similar student characteristics. For example, the

experiment could be repeated at a mid-western university, a northeastern university, a

southwestern university and community colleges in the same locations. Given that

significant differences do not exist, the results of the combined experiments could be

generalized to a very broad target population. This is outside the scope of this

experiment.

Huck [Huck, 1974] identified eleven different sources of external validity threats

in an experiment. Ten of the sources of concern were addressed in this experiment.

These ten threats were as follows:

1. Experimentally accessible population versus target population

2. Interaction of treatment effects and subject characteristics

3. Describing the independent variable

4. Describing and measuring the dependent variable

5. Multiple-treatment interference

6. Interaction of history and treatment effects

7. Interaction of time of measurement and treatment effects

8. Rosenthal effect

9. Novelty and disruption effect

10. Hawthorne effect

Huck identified one additional source of external validity threat that was applicable only

to other experimental designs. External validity is divided into two subgroups. The

ability to generalize experimental results to other populations is called population validity

(items 1 and 2 above). The ability to generalize experimental results to similar

environments (or settings) is called ecological validity (items 3 through 10 above).

144

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Experimentally Accessible Population versus Target Population. The

experimentally accessible population was GWU students enrolling in the Introduction to

Computing course. The potential target population of the experiment was college

underclassmen without prior college computer science and computer programming

experience. As previously stated, generalization of the experiment requires work outside

the scope of the experiment. However, sufficient information was recorded for a

comparison of the experimental population to a target population to be made.

Interaction of Treatment Effects and Subject Characteristics. Students in this

experiment were predominately freshmen and sophomores. The ability to generalize the

results of the experiment to another similar population is the threat here. For example,

generalizing the results of this experiment may not be appropriate to college graduate

students. Graduate students may learn concurrency much more efficiently than freshmen

and sophomore students, given the same instructional methods are applied. Again,

sufficient information was recorded for a comparison of the experiment's population to a

target population to be made.

Describing the independent variable. Descriptions of procedure, activities, and

time frames for the treatment must be of sufficient detail that the experiment can be

replicated. This experiment would be very difficult to replicate without first obtaining all

the instructional materials used in the classes. These materials have been given to the

class director and current class instructor, Professor Feldman.

Describing and measuring the dependent variable. There are several aspects

to this threat area:

• Descriptions of the dependent variables must be of sufficient detail that the

experiment can be replicated

• Reliability of the measuring or test instrument

• Validity of the measuring or test instrument selected

• Reliability of the graders (in this experiment)

• Inaccurate analysis of the measured data

The above items are addressed in the succeeding paragraphs. The compilation of

programs portion of this experiment is unique because the test instrument and data

145

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

preparation tools are computer processes. Reliability is not the issue. Correctness is the

issue. The test instrument programs were subjected to repeated testing (both for

debugging and results verification).

Since the distributions collected were mostly non-normal, only non-parametric

statistical tests that compare median scores between the groups could be used. The

dependent variables in the experiment are the similarities in the distributions of the

groups.

The reliability of the measuring or test instrument in this experiment concerns the

degree to which the exams and projects used in the experiment test the knowledge learned

by the students. Projects are designed to be both learning tools and a way of

demonstrating the knowledge used. There exists a vast range of test question types

available to the instructor — from multiple choice questions to problem solving questions.

Test question selection was patterned after the style of questions used by the prior class

instructor. The concurrency question topic selection is very basic. The concurrency

questions selected for the final exam come from very common concepts in concurrency:

• Semaphores

• Reading concurrent source code

• Message passing

• Shared memory

Another aspect of test performance is that students (not the instructor) select the questions

that they are going to answer. The perception of what is easy or hard to the instructor

may not be the perception of the test-taking student. Many students tend to pick the

easier questions first. Other students do the test questions in the order presented. Given

that a student believes that the sequential questions are fundamentally easier than

concurrency questions, the sequential questions will be answered first and the

concurrency questions will be left for last. The reverse is also true. Since the experiment

is part of a college course, the student must be allowed to demonstrate what the student

knows. For example, the final exam should not be divided into two halves — one for

concurrency and one for sequential topics. Students should be allowed to maximize their

time on the topics they know best.

146

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

The validity of the measuring or test instruments selected for hypothesis testing

were standard educational practice — tests and projects that were graded.

The reliability of the graders in this experiment was addressed in Subsection 5.8.1

under the paragraph title Instrumentation.

The accuracy of the analysis of the measured data is not addressed explicitly. It is

assumed to be correct. The reasons for this assumption to be valid are as follows:

• The distributions collected were mostly non-normal; hence, only non-

parametric statistical tests that compare median scores between the groups

could be used. Averages were reported (however, averages in non-normal

distributions were more susceptible to the effects of outliers). Comparison of

groups' medians is standard statistical practice. [Hintze, 1999]

• Equality of variance tests were done to determine which non-parametric

statistical tests could be used (the results of these tests are in the Results

Section of the document). Testing the equality of variance of distributions is

standard statistical practice. [Hintze, 1999]

• Statistical procedures as defined by Hintze [Hintze, 1999] in using the

statistical package named "Number Cruncher Statistical Systems (NCSS)"

were followed.

Multiple-treatment interference. This threat occurs when subjects of an

experiment are exposed to multiple treatments. The source of the multiple treatments can

be one or more experiments. In this experiment the concurrency instruction is considered

one treatment given over an eight-week period. An example of multiple-treatment

interference would be to introduce concurrency and object-orientation simultaneously. It

would be impossible to differentiate the effect of concurrency on sequential question test

scores when both treatments are applied together. There is a single treatment applied in

this experiment — instruction in concurrency. The investigator is unaware of any student

being involved in another experiment during the semester the student was enrolled in the

class.

147

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Interaction of History and Treatment Effects. This effect is due to historical

events interacting with the subjects such that the effect of the treatment is changed. The

investigator is aware of only one historical event that had the potential to impact a

student's attention ~ the political turmoil surrounding the President o f the United States

during 1998. The investigator's observation was that most students were oblivious to the

event except a few students repeating late night talk show jokes. There were no other

historical events that manifested themselves in classroom behavior.

Interaction of Time and Treatment Effects. This effect is due to the time

between the treatment being applied and the observation (or measurement) being made.

In a computer science classroom environment with one mid-term exam and one final

exam, there is a delay between treatment and observation. The maximum delay results

from instruction during class week nine and the final exam occurring in class week 16.

There exist two observed differences between the fall and spring semesters:

• The fall final exams occurred near the end of the exam period while the spring

final exam occurred in the middle of the exam period.

• Spring break occurred after the ninth week of class during the spring semester

However, since a significant difference was not found in the final exam sequential

question scores for all groups, the effect should not be claimed to be significant.

Rosenthal Effect. This effect was due to the experimenter modifying the

subjects’ behavior unintentionally. The effect can be passed to the subjects by cues,

gender, dress, appearance and so forth. In this experiment the instructor, investigator, and

the experimenter were the same person. The students were in class with the instructor for

one semester; thus, the instructor must have effected the students. However, each

semester, or group, was exposed to the instructor for the same amount of time (and that

the students all received an equal "dose" of the instructor). Given that each group got the

same "dose" of the instructor, differences in the groups due to Rosenthal effect should not

exist.

Novelty or Disruption Effect. This effect is due to the innovative nature of the

treatment and the possible disruption of the subjects' performance due to being

uncomfortable dealing with something new. The experiment was conducted as series of

148

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

classes over three semesters. The newness of a class wears off over a period of several

weeks. The course becomes just another class. The author is unaware of any new or

novel aspects of the course presentation, except for the recording of student compilations

(see Hawthorne effect discussion below).

Hawthorne Effect. Hawthorne effect deals with subjects' behavior changing due

to the knowledge of being in an experiment. Although reminded numerous times over

several weeks that the student compiles were being recorded, two students were caught

cheating on the laboratory work that was not part of the experiment. The students forgot

that they were part of an experiment. Thus, there is evidence that by week eight of the

class, before the treatment had even started, the students forgot that they were part of an

experiment. The course was just another class.

5.8.3 Sensitivity of the Assessment of Concurrency Instruction On Learning

Sequential Material

The assessment of concurrency instruction on learning sequential material is

presented in Subsection 5.3 of this document. The probability that the control group and

the two treatment groups are not significantly different when tested about their medians is

repeated in the following table (the table is presented in Subsection 5.3).

Method
Chi-Square

(H) Probability
Decision

(0.05)
Corrected for Ties 5.420731 0.066512 Accept Ho

This probability that the "Accept Ho" decision is based upon is low. Therefore, an

examination of other aspects of the comparison is warranted.

The statistical methods used in Subsection 5.3 compare the three groups together.

An alternative method of comparison is to compare two groups at a time. The overall

statistics for the six common sequential final exam questions are given in the table below.

Both treatment groups are combined into a single group.

149

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Control Group Both Treatment Groups
Fall 1997 Spring and Fall 1998

Average 35.54 33.32
Median 38 34
Standard
Deviation

11.662 9.702

Variance 135.998 94.136
Count 24 72

The table below shows the results of the normality tests (for the two groups together) and

the equal-variance test on the two groups.

Assumption
Test

Value Probability
Decision

(0.05)
Skewness Normality of Residuals -0.7045 0.481097 Accept
Kurtosis Normality of Residuals -2.1405 0.032313 Reject
Omnibus Normality of Residuals 5.0782 0.078938 Accept
Modified-Levene Equal-Variance
Test 2.0399 0.156535 Accept

The omnibus test result indicates that the two groups just pass the normality test. The

Modified-Levene test indicates that there is sufficient equality of variance for a non-

parametric test with an equality of variance assumption to be used. The non-parametric

statistical test selected is the Mann-Whitney U test. The results are given below.

Alternative
Hypothesis Test Value Probability

Decision
(0.05)

D(G1) o D(G23) 0.9991 0.317738 Accept Ho

D(G1) > D(G23) 1.0076 0.843173 Accept Ho

In a two way comparison of control group to combined treatment group, the two groups

(both control and treatment) are not significantly different when tested around their

medians. The probability that the groups are not significantly different when tested

150

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

around their medians is now 0.317738 (rather than 0.066512 as in the three way

comparison).

A second two way comparison is to compare the Fall 1997 control group and the

Spring 1998 treatment group. However, the Spring 1998 treatment group received the

question that included an "integer divide" (in the six common sequential final exam

questions set) and the other groups' question set did not. This comparison is skipped.

A third two way comparison is to compare the two Fall groups on the six common

sequential final exam questions. The table below shows the results of the normality tests

and the equal-variance test on the two Fall groups.

Assumption
Test

Value Probability
Decision

(0.05)
Skewness Normality of Residuals -1.3287 0.183949 Accept
Kurtosis Normality of Residuals -1.5916 0.111482 Accept
Omnibus Normality of Residuals 4.2985 0.116571 Accept
Modified-Levene Equal-Variance
Test 0.1870 0.667583 Accept

The omnibus test result indicates that the two groups pass the normality test. The

Modified-Levene test indicates that there is more than sufficient equality of variance for a

non-parametric test with an equality of variance assumption to be used. The non-

parametric statistical test selected is the Mann-Whitney U test. The results are given

below.

Alternative
Hypothesis Test Value Probability

Decision
(0.05)

D(G1) o D(G3) 0.3984 0.690306 Accept Ho

D(G1) <D(G3) 0.4212 0.663198 Accept Ho

In a two way comparison of control group to the Fall 1998 treatment group, the two

groups (both control and treatment) are not significantly different when tested

around their medians. The probability that the groups are not significantly different

when tested around their medians is now 0.690306 (rather than 0.317738 as in the prior

two way comparison).
151

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

5.8.4 Detailed Analysis of Student Withdrawals

The prior instructor in the course, Feldman, stated that the withdrawal percentage

for the CS1 classes he had taught was approximately 20 percent. Thus, further analysis

of the withdrawal rate for the experimental classes was appropriate, in particular for the

Fall 1998 semester (withdrawal rate was 28.9 percent).

In Section 5.8.1, Internal Validity, student withdrawal statistics are presented as

with regard to mortality as a threat to the experiment. The table below provides more

information on student withdrawals. Illness is a major factor in the Fall 1998 withdrawal

rate. If the four Fall 1998 students who withdrew from class due to illness had remained

in the class, the withdrawal rate would be approximately 18.4 percent. The overall

percentage of withdrawing students that are female is 30 percent; this percentage is in line

with the overall percentage of female enrollment (refer to Section 5.1, Student

Populations, for more details).

Category
Control
Group Treatment Groups Totals

Semester Fall 1997 Spring 1998 Fall 1998

Illness 1 0 4 5

Female 4 2 3 9

Male 1 12 8 21

Total 5 14 11 30

Percentage 14.3 18.4 28.9 21.6

The following were the student provided reasons for withdrawal from the Fall

1998 class:

• Illness (can not continue class) — 4

• Change of major — 1

• Employment interferes — 1

• Collegiate sports interferes - 1

152

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

• Unwilling to spend the time necessary — 1

• Low mid-term grade only -- 1

One student did not provide a reason, and another of the 11 withdrawing students was a

repeat withdraw. In further analysis, this repeat withdraw is not counted in the Fall 1998

classes withdrawal statistics (withdrawal count used below is 10).

In order to examine the withdrawal rate, weekly withdrawal data was generated.

The following process was used to obtain the withdrawal week number is as follows:

• Use the actual week of student withdrawal (used when withdraw date was

recorded), or

• Use actual week of the first project not done

The withdrawal week data for the three classes is given below in week number (and

count) format:

• Fall 1997 semester— 3(2), 12(2), 15

• Spring 1998 semester - 4,6, 8(6), 10(3), 11(2), 12

• Fall 1998 semester— 3,4, 5,7, 9, 10(2), 11(2), 15

For example, six students withdrew from the Spring 1998 semester class in week eight.

The average withdrawal week for all three groups is week 8.5 to 9.0. This means that

one-half the withdrawals occur before concurrency instruction has started or at the time

the mid-term score is returned.

The table below shows the results of the normality tests (for all three groups

together) and the equality of variance test on the combined groups.

Assumption
Test

Value Probability
Decision

(0.05)
Skewness Normality of Residuals -0.5448 0.585914 Accept
Kurtosis Normality of Residuals -0.3551 0.722493 Accept
Omnibus Normality of Residuals 0.4229 0.809415 Accept
Modified-Levene Equal-Variance
Test 2.2199 0.128793 Accept

The omnibus test result indicates that three groups combined together could form a

normal distribution. The Modified-Levene test indicates that there is minimal equality of

153

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

variance for a non-parametric test with an equality of variance assumption to be used.

The number of withdrawals in the Fall 1997 semester (five) is ordinarily too low for

statistical tests to be used; however, there is no alternative available. The remaining 29

withdraws (the repeat withdrawal is not included) were compared using the non-

parametric Kruskal-Wallis One-Way ANOVA on Ranks test to find the probability that

the three classes were derived from the same population. The results of the test are given

in the table below.

Method
Chi-Square

(H) Probability
Decision

(0.05)
Corrected for Ties 0.301092 0.856797 Accept Ho

The "Accept Ho" decision means the following: the three groups (both control and

treatment) are not significantly different when tested around their medians.

In conclusion, the profile of student withdrawals during the three semesters of this

experiment does not yield anything unusual. Finally, the overall withdrawal rate for the

three semesters in the experiment is in line with the prior withdrawal rate stated by

Feldman, when concurrency was not taught.

154

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

5.9 Hypothesis and Findings

Hypothesis One.

Hypothesis: Students who have had concurrency training will have significantly

lower sequential test question scores than those who have not had concurrency

training.

Null Hypothesis: There is no difference in the sequential test question scores

between a student who has had concurrency training and a student who has not

had concurrency training.

An assessment of the impact of concurrency instruction on learning sequential

material was done as part of the final exam. Six sequential questions were given to the

control group and to the two treatment groups. The test scores of the three groups were

compared for significant differences. The test selected was the Kruskal-Wallis One-Way

ANOVA on Ranks; the test is a non-parametric statistical test. The result of comparing

the three distinct groups is given in the table below.

Method
Chi-Square

(H) Probability
Decision

(0.05)
Corrected for Ties 5.420731 0.066512 Accept Ho

The "Accept Ho" decision means the following: the three groups (both control and

treatment) are not significantly different when tested around their medians. The

comparison was repeated using five of the six sequential questions, due to an "integer

divide" difference in one of the questions for the Spring 1998 treatment group. Again,

the test selected was the Kruskal-Wallis One-Way ANOVA on Ranks; the test is a non-

parametric statistical test. The result of comparing the three distinct groups is given in

the table below.

155

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Method
Chi-Square

(H) Probability
Decision

(0.05)
Corrected for Ties 5.329297 0.069624 Accept Ho

The "Accept Ho" decision means the following: the three groups (both control and

treatment) are not significantly different when tested around their medians.

Finally, the two treatment groups combined into a single group. This results in a

control group to combined treatment group comparison. The test selected was the Mann-

Whitney U test, a non-parametric statistical test. The result is given in the table below.

Alternative
Hypothesis Test Value Probability

Decision
(0.05)

D(G1) o D(G23) 0.9991 0.317738 Accept Ho

In a two way comparison of control group to combined treatment group, the two groups

(both control and treatment) are not significantly different when tested around their

medians. The probability that the groups are not significantly different when tested

around their medians is now 0.317738 (rather than 0.066512 as in the three way

comparison).

The hypothesis must be rejected. The three groups (both control and treatment) are not

significantly different when tested around their medians. The null hypothesis is accepted.

There is no significant difference in the sequential test question scores between a student

who has had concurrency training and a student who has not had concurrency training.

156

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Hypothesis Two.

Hypothesis: Students, with both sequential and concurrency instruction, will score

significantly different on concurrency test questions than on sequential test

questions.

Null Hypothesis: There is no difference in the concurrency test question scores

and sequential test question scores.

A comparison of the students' ability to solve sequential questions and

concurrency questions was done as part of the final exam. Four final exam questions

given to the treatment groups were questions on concurrency material. The students

selected the order in which the questions were answered.

The sequential test scores and concurrency test scores within each treatment group

were compared for significant differences. The test selected was the Mann-Whitney U

test; the test is a non-parametric statistical test. The result of running the test for the

Spring 1998 treatment group is given in the table below.

Alternative
Hypothesis Test Value Probability

Decision
(0.05)

D(S) o D(C) 5.4078 0.000000 Reject Ho

D(S) > D(C) 5.4144 1.000000 Accept Ho

The result of running the test for the Fall 1998 treatment group is given in the

table below.

Alternative
Hypothesis

Test Value
Probability

Decision
(0.05)

D(S) o D(C) 3.5994 0.000319 Reject Ho

D(S) > D(C) -3.6245 0.999855 Accept Ho

157

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Two alternative hypotheses were presented. The "D(S) o D(C)" hypothesis is the null

hypothesis (the probability that there is no significant difference between the two groups).

The second hypothesis shown is the difference hypothesis with the highest probability (in

this case the sequential distribution, "D(S)'\ is greater than concurrency distribution,"

D(C)" with a probability at or near 1.0 in both treatment groups).

The null hypothesis must be rejected. The hypothesis accepted is as follows — students,

with both sequential and concurrency instruction, will score significantly lower on

concurrency test questions than on sequential test questions. There are significant

differences between the sequential test question scores and the concurrency test scores

with each group.

Hypothesis Three.

Hypothesis: Students who use concurrent methods on a "large" project will have

significantly lower project scores than those who use sequential methods.

Null Hypothesis: There is no difference in "large" project scores between a

student using concurrent methods and sequential methods.

The large project in the Introduction to Computing course was the last project,

project nine. In this project the students were asked to create a small database and to

provide rudimentary set of capabilities. All groups were given a crude character based

menu interface to modify. The control group class did the project using all sequential

methodology. The treatment group classes did the project using concurrent methodology.

The project scores of the three groups were compared for significant differences. Only

non-zero project scores were included in the comparison (i.e., the student had to do the

project). The test selected was the Kruskal-Wallis One-Way ANOVA on Ranks; the test

is a non-parametric statistical test. The result of running the test is given in the table

below.

158

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Method
Chi-Square

(K) Probability
Decision

(0.05)
Corrected for Ties 0.4230784 0.809338 Accept Ho

The "Accept Ho" decision means the following: the three groups (both control and

treatment) are not significantly different when tested around their medians.

The hypothesis must be rejected. The three groups (both control and treatment) are not

significantly different when tested around their medians. The null hypothesis is accepted.

There is no difference in "large" project scores between a student using concurrent

methods and sequential methods.

Findings.

A measure of relative work (by compilations) was studied in this experiment. The

measure of relative work used was a ratio:

Compilations for project nine (P9)

Ratio = ----------------------------------, per student

Compilations for projects two through five (P2-5)

Projects two through five were performed over a five week period. The period

was longer if project five was completed late. Project nine was performed over a three

week period. Thus, the "ratio" studied was derived from eight weeks of student

compilation activity. The ratios for the control group and treatment groups were

compared. The test selected was the Kruskal-Wallis One-Way ANOVA on Ranks; the

test is a non-parametric statistical test. The result of running the test is given in the table

below.

Method
Chi-Square

(H) Probability
Decision

(0.05)
Not Corrected for Ties 1.593634 0.450761 Accept Ho

159

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

The "Accept Ho" decision means the following: the three groups (both control and

treatment) are not significantly different when tested around their medians.

Duplicate values do not exist within any single group; thus, the statistic is not corrected

for ties. Significant differences in the compilation "ratio" are not found, even though the

treatment group students used concurrency methodology in project nine.

The ratio of total error messages to distinct error messages was studied for the

control group and the two treatment groups. Compiler error messages were compressed

into distinct error messages. The method used to create distinct error and warning

messages was as follows:

• Replace variable names with a representative symbol (such as "token")

• Replace numbers with a representative symbol (such as the value "99")

This ratio was measure of the number of times the "average" error message occurs. The

test selected was the Kruskal-Wallis One-Way ANOVA on Ranks; the test is a non-

parametric statistical test. The result of running the test is given in the table below.

Method
Chi-Square

(H) Probability
Decision

(0.05)
Not Corrected for Ties 0.3133233 0.854993 Accept Ho

The "Accept Ho" decision means the following: the three groups (both control and

treatment) are not significantly different when tested around their medians. The

very high probability is significant, it implies that compilation error resolution is not

affected by concurrency.

160

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

6 CONCLUSIONS AND FUTURE RESEARCH

This section of the document presents the conclusions and future research topics.

The conclusions are presented first.

6.1 Conclusions

Several conclusions can be drawn from the results of this experiment. They are

presented in this subsection of the document.

First, concurrency can be taught to CS1 students. The students do learn the

concurrency material. Both treatment groups were able to do the large project using

concurrency methods (refer to Section 5.5). The control and treatment groups were not

significantly different in performance on the large project. The treatment groups students

were able to demonstrate learning concurrent material on the final exam (refer to Section

5.4); however, the treatment groups' concurrency test question scores were significantly

lower than the treatment groups' sequential test question scores.

Second, teaching concurrency to CS1 students does no harm — the treatment

group students learned the sequential material successfully. In a two way comparison of

the control group to the combined treatment group, the two groups (both control and

treatment) are not significantly different (see Section 5.8.3). Further, there is a

probability of 0.663 that the Fall 1998 treatment group did better on the final exam

sequential test questions than did the Fall 1997 control group.

Third, compilation error resolution is not affected by concurrency -- differences in

distinct error ratio (DER) between using sequential methods and concurrent methods to

do the large project were not observed (refer to Section 5.6). Restated, for the

programming language Ada 95 (a programming language with imbedded concurrency),

differences in the novice students’ ability to solve syntax errors in either concurrent

programs or sequential programs were not observed. Compilation listing and syntax error

recording was an essential aspect of this experiment. This recording capability allowed

the experimenter to derive the following items:

161

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

• Distinct error ratios

• Distinct error messages

• Relative level of effort for the large project as compared to other projects

Much more information could be "mined" from the compilation listing and syntax error

data recorded during this experiment.

Fourth, the methodology used in the experiment performed as expected — validity

problems did not get into the experiment. Threats to the experiment due to internal

validity problems were handled with a minimum of defensive action (refer to Section

5.8.1). Students were placed in one of four categories: novice, experienced, removed, and

withdrawal. Only novice students were included in the experiment. There were

sufficient novice students in each class, after filtering for experienced, removed, and

withdrawn students, for the experiment to be run (refer to Section 5.1). Internal validity

threats such as self-selection, mortality, and maturation required no defense at all.

Threats to the experiment due to external validity problems were handled without defense

action being needed (refer to Section 5.8.2). Situations arose during the experiment that

provide credence to the assertion that the students were unaware they were part of an

experiment after several weeks had passed.

Finally, based on the first three conclusions, introducing concurrency into an

introductory computer science course can be done.

6.2 Future Research

Several areas of future research topics can be drawn from this experiment. They

are presented in this subsection of the document.

6.2.1 Extending the Experiment

This experiment can be repeated in different collegiate settings. The experiment

could be repeated at different colleges and universities that have the potential to draw

distinctly different student populations with similar student characteristics. Given that

similar results are derived in these different settings, this would extend the finding of this

162

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

experiment to a larger, more general, population. It would also validate the findings of

this experiment.

This experiment can be repeated in senior high school settings. The experiment

could be repeated in high schools that have advance placement in computer science.

Extending the experiment to high schools would have several interesting aspects (as

compared to a college student population):

• The student population would be younger.

• The student population may be less mature.

• The student population would probably have much less opportunity to skip or

withdraw from the class.

Performing this experiment in a high school setting would require that the definition of an

experienced student be rewritten (the current definition includes college course work).

6.2.2 Sequencing of Course Materials

The finding that significant differences in final exam sequential test question

scores were not found whether the students did or did not received concurrency

instruction is important. The investigator knows of three possible implications of this

finding:

• Instruction in concurrency and programming using concurrent methods does

not logically conflict with sequential instruction (restated -- sequential and

concurrent instruction "dovetail" together in such a way that the sequential

instruction loss is minimal)

• Beginning college level programming instruction provides more information

than the students can absorb and replicate in a given topic area -- sequential

programming

• The additional sequential material presented and the additional time spent

reviewing already presented sequential material to the control group students

may not reinforce already learned sequential material

163

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

The second item is fascinating because it resembles Miller's theorem that states

that the average person can remember (memorize) only a fixed count of numbers (five

through nine) at a time. Restated, the difference between sequential methods and

concurrency methods is enough of a change in subject, that the concurrent method

learning continues to be recorded by the students. This implies that there may be a point

of diminishing returns in teaching sequential methods and that the sequence of material

presented to entry level college programmers should be examined. From a different

perspective, this would imply a "teach the basics philosophy" for multiple computer

science areas (or topics) in the introductory course. It may provide a key to

understanding some withdrawal and low grade behavior in introductory computer science

courses.

The third item implies that the control group students had already learned certain

sequential material and it was time to "move on" to new material.

Taking items two and three together has further implications ~ the sequencing of

introductory computer science material should be reexamined. The examples given

below serve to illustrate the point.

The order that introductory materials are presented could be modified to give

students more time with more difficult concepts. LOOP structures are somewhat more

difficult for students to initially grasp. Restated, the time on task to comprehend LOOPs

may be longer. First, moving the introduction of LOOP structures to earlier in the course

would provide more time on the material before examination and the students would be

more familiar with the material. Second, moving the introduction of LOOP structures to

earlier in the course increases the variation in projects available.

Ada task syntax appears to be more difficult for students to grasp. Moving the

introduction of tasks to earlier in the course is probably not a good idea. However, if the

semester were 18 weeks long (two weeks longer), the final exam concurrency question

scores should improve. The Ada task syntax could have been well rehearsed by the

students.

In summary, the sequence of material presented and time of presentation of

introductory computer science materials should receive further study.

164

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

6.2.3 Language and Compiler Characteristics

The finding that students did better on final exam sequential test question scores

compared to final exam concurrency test question scores could be influenced due to Ada

task syntax appearing to be more difficult for students to grasp. Since the results indicate

that novice students can and do learn concurrent material, the next question is "are these

results generalizable to another computer language". Two possible languages are Java

and C++. Java has the advantage of having threads built into the language. C++ has the

advantages of being accepted as a language used for teaching object-oriented

programming and a language heavily used in business. C++ has the disadvantage of

concurrency methods being an add-on to the language or done through system calls.

However, these advantages and disadvantages can be shown to be secondary to the clarity

of error and warning messages from the compiler. The target population is college entry

level computer science students. Beginning computer science students need excellent

error and warning messages. Easy to understand error and warning messages make it

much easier for novice programmers to learn. Older languages have the potential to have

more revisions to an existing compiler. For example, GNU C++ compiler has been

revised and updated numerous times. Most of these revisions can and do have

improvements to the compile time diagnostics — the error and warning message system.

Finally, the instructor's familiarity with the computer language is important.

Significant differences in the Distinct Error Ratio (Total Errors / Distinct Errors),

DER, for the sequential and concurrent large projects were not found; this finding is

based on the programming language Ada. Again, the next question is "are these results

generalizable to another computer language". The computer language selected should

have concurrency built into the language. Java has the advantage of having threads built

into the language. C++ does not have concurrency as an intrinsic part of the language.

Another computer language with intrinsic concurrent capabilities is Occam. The

language Occam uses indentation as the syntax to designate loop structure. Novice

programming students may have difficulty with the syntax used in Occam..

165

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Setting concurrency aside, the tools developed in this experiment can be adapted

to another computer language. An experiment should be created to compare learning

introductory computer science with one class using Ada and the other class using another

language (preferably C++ or Java). Given that both classes are taught the same material

and in the same order, a direct comparison of the languages for novice students could be

done. Student learning curves for syntax and semantics could be developed and

compared. Ideally the compilers should both come from the same "software house". For

example, one class could use GNU's GNAT Ada compiler and the other class could use

GNU's C++ compiler. The compilers sharing the same origins (i.e., the compilers are

developed by GNU) provides a greater possibility for the compilers to be developed with

the same philosophy for the error and warning message system and that the compilers

share the object code generator.

There is a second facet of the DER that should be examined. Many years ago, the

investigator was a programming group manager for a large consulting firm in the

Washington area. The programming staff at the firm was required to be multi-lingual

(computer languages). As the staff learned new computer languages, the staffs ability to

recognize compiler errors and solve them quickly appeared to improve with experience.

However, the order in which languages were learned was a factor. College students may

exhibit similar behavior. It would be very interesting (at least to the investigator) to

compile statistics on DER behavior based on student performance. The long term effect

of the order that computer languages are introduced to students could be studied from an

DER perspective. The table below is an DER profile for given college. The table shows

the order in which the programming languages are introduced.

Programming
Language Semesters Programming

1 2 3 4 5 6
Ada n.nn n.nn
C++ n.nn n.nn n.nn n.nn
Java

166

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

In the table above, "n.nn" is the median DER for a given group at College A. This

information could then be compared with a similar Error Ratio table compiled at another

college. The impact of the order in which computer languages are taught in college would

have a new known metric.

167

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

BIBLIOGRAPHY

[Adams, 1996] Adams, Joel C., "Object-Centered Design, A Five Phase
Introduction To Object-Oriented Programming In CS1-2", The Papers of the Twenty-
seventh SIGCSE Technical Symposium on Computer Science Education, Philadelphia,
Pennsylvania, SIGCSE Bulletin, Volume 28, Number 1, March 1996, pages 78-82.

[Allen, 1997] Allen, Michael, Wilkerson, Barry, and Alley, James, "Parallel
Programming for the Millenium: Integration Throughout the Undergraduate Curriculum",
Conference Proceedings, Second Forum on Parallel Computing Curricula, Newport
Rhode Island, June 1997, http://www.cs.dartmouth.edu/FPCC/DapersAyilkerson/index.html.

[Amow, 1995] Araow, David M., XDP: A Simple Library For Teaching A
Distributed Programming Module", The Papers of the Twenty-sixth SIGCSE Technical
Symposium on Computer Science Education, Nashville, Tennessee, SIGCSE Bulletin,
Volume 27, Number 1 March 1995, pages 82-86.

[Ashton, 1997] Ashton, Paul, "Using Interaction Networks for Visualization of
Message Passing", The Papers of the Twenty-eighth SIGCSE Technical Symposium on
Computer Science Education, San Jose, California, SIGCSE Bulletin, Volume 29,
Number 1, March 1997, pages 272-276.

[Aki, 1989] Aki, Selim, G., The Design and Analysis of Parallel Algorithms.
Prentice Hall, Englewood Cliffs, New Jersey, 1989.

[Andrews, 1991] Andrews, Gregory R., Concurrency Programming. Benjamin /
Cummings, Redwood City, California, 1991.

[Ausubel, 1970] Ausubel, David P., The Use of Ideational Organizers in Science
Teaching, Occasional Paper 3, ERIC Document Reproduction Service, Number
ED050930, March 1970.

[Bachus, 1996] Bachus, Bruce D., Determining the Feasibility of Introducing
Concurrent Programming into the Lower-Level Curriculum via a Controlled Experiment
Doctor of Science Dissertation, George Washington University, Washington, D.C., 1996

[Baldwin, 1996] Baldwin, Doug, "Discovery Learning In Computer Science",",
The Papers of the Twenty-seventh SIGCSE Technical Symposium on Computer Science
Education, Philadelphia, Pennsylvania, SIGCSE Bulletin, Volume 28, Number 1, March
1996, pages 222-226.

[Barsalou, 1992] Barsalou, Lawrence W., Cognitive Psychology, An Overview for
Cognitive Scientists. Lawrence Erlbaum Associates, Hillsdate, New Jersey, 1992.

[Ben-Ari, 1990] Ben-Ari, M., Principles of Concurrent and Distributed
Programming. Prentice Hall, New York, New York, 1990.

168

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.cs.dartmouth.edu/FPCC/DapersAyilkerson/index.html

www.manaraa.com

[Ben-Ari, 1996] Ben-Ari, Mordechai, "Using Inheritance To Implement
Concurrency", The Papers of the Twenty-seventh SIGCSE Technical Symposium on
Computer Science Education, Philadelphia, Pennsylvania, SIGCSE Bulletin, Volume 28,
Number 1, March 1996, pages 180-184.

[Berk, 1996] Berk, Toby S., "A Simple Student Environment For Lightweight
Process concurrent Programming Under SunOS", The Papers of the Twenty-seventh
SIGCSE Technical Symposium on Computer Science Education, Philadelphia,
Pennsylvania, SIGCSE Bulletin, Volume 28, Number 1, March 1996, pages 165-169.

[Brilliant, 1996] Brilliant, Susan S., and Wiseman, Timothy R., "The First
Programming Paradigm And Language Dilemma", The Papers of the Twenty-seventh
SIGCSE Technical Symposium on Computer Science Education, Philadelphia,
Pennsylvania, SIGCSE Bulletin, Volume 28, Number 1, March 1996, pages 338-342.

[Brown, 1998] Computer Science Department, Brown University,
http://www.cs.brown.edu/courses.

[Burkhart, 1997] Burkhart, Helmar, "Parallel Programming Using Public Domain
Software", The Papers of the Twenty-eighth SIGCSE Technical Symposium on
Computer Science Education, San Jose, California, SIGCSE Bulletin, Volume 29,
Number 1, March 1997, pages 224-228.

[Bums, 1995] Bums, Alan, and Wellings, Andy, Concurrency in Ada. Cambridge
University Press, 1995.

[Bustard, 1990] Bustard, David W., Concepts of Concurrent Programming.
Curriculum Module CM-24, Software Engineering Institute, Carnegie Mellon University,
Pittsburgh, Pennsylvania, April 1990.

[Bynum, 1996] Bynum, Bill, and Camp, Tracy, "After You, Alfonse: A Mutual
Exclusion Toolkit", The Papers of the Twenty-seventh SIGCSE Technical Symposium on
Computer Science Education, Philadelphia, Pennsylvania, SIGCSE Bulletin, Volume 28,
Number 1, March 1996, pages 170-174.

[Carnegie, 1998] Computer Science Department, Carnegie Mellon University,
Pittsburgh, Pennsylvania, http://www.cs.cmu.edu/csd/Lmdergrad/ugcourses.html.

[Chandra, 1994] Chandra, Rohit, Gupta, Anoop, and Hennessy, John L., "COOL:
An Object-Based Language for Parallel Programming", Computer Volume 27, Number
8, August 1994, pages 13-26.

[Cohen, 1986] Cohen, Norman H., Ada As A Second Language. McGraw-Hill,
New York, New York, 1986.

169

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.cs.brown.edu/courses
http://www.cs.cmu.edu/csd/Lmdergrad/ugcourses.html

www.manaraa.com

[Cormen, 1990] Cormen, Thomas H., Leiserson, Charles E., and Rivest, Ronald L.,
Introduction to Algorithms. MIT Press, Cambridge, Massachusetts, 1990.

[Dartmouth, 1998] Department of Computer Science, Dartmouth College, Hanover,
New Hampshire, http://www.cs.dartmouth.edu/.

[DeClue, 1996] DeClue, Tim, "Object-Orientation And The Principles of Learning
Theory: A New Look At Problems and Benefits", The Papers o f the Twenty-seventh
SIGCSE Technical Symposium on Computer Science Education, Philadelphia,
Pennsylvania, SIGCSE Bulletin, Volume 28, Number 1, March 1996, pages 232-235.

[Decker, 1994] Decker, Rick, and Hirschfield, Stuart, "The Top 10 Reasons Why
Object-Oriented Programming Can't Be Taught In CS1", The Papers of the Twenty-Fifth
SIGCSE Technical Symposium on Computer Science Education, Phoenix, Arizona,
SIGCSE Bulletin, Volume 26, Number 1, March 1994, pages 51-55.

[Dillon, 1997] Dillon, Eric, Dos Santos, Carlos Gamboa, and Guyard, Jacques,
"Teaching an Engineering Approach for Networking Computing", The Papers of the
Twenty-eighth SIGCSE Technical Symposium on Computer Science Education, San
Jose, California, SIGCSE Bulletin, Volume 29, Number 1, March 1997, pages 229-232.

[Ductworth, 1994] Duckworth, James R., "Introducing Parallel Processing Concepts
Using The Maspar MP-1 Computer", The Papers of the Twenty-Fifth SIGCSE Technical
Symposium on Computer Science Education, Phoenix, Arizona, SIGCSE Bulletin,
Volume 26, Number 1, March 1994, pages 353-356.

[Elenbogen, 1996] Elenbogen, Bruce S., "Parallel and Distributed Algorithms
Laboratory Assignments In Joyce / Linda", The Papers of the Twenty-seventh SIGCSE
Technical Symposium on Computer Science Education, Philadelphia, Pennsylvania,
SIGCSE Bulletin, Volume 28, Number 1, March 1996, pages 14-17.

[Ercal, 1996] Ercal, Fikret, Class Notes, CSc 387 - Parallel Processing:
Algorithms, Architectures, and Languages, November 1996,
http://www.cs.unir.edu/--ercal/387/387.html.

[Feldman, 1990] Feldman, Michael, B., Language and System Support for
Concurrent Programming. Curriculum Module CM-25, Software Engineering Institute,
Carnegie Mellon University, Pittsburgh, Pennsylvania, April 1990.

[Feldman, 1992] Feldman, Michael, B., "The Portable Dining Philosophers: a
Movable Feast of Concurrency and Software Engineering", The Papers of the Twenty-
third SIGCSE Technical Symposium on Computer Science Education, Kansas City,
Missouri, SIGCSE Bulletin, Volume 24, Number 1, March 1992, pages 276-280.

[Feldman, 1996] Feldman, Michael, B, and Kofftnan, Elliot, B., Ada 95 Problem
Solving and Program Design. Addison-Wesley, Reading, Massachusetts, 1996.

170

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.cs.dartmouth.edu/
http://www.cs.unir.edu/--ercal/387/387.html

www.manaraa.com

[Feldman, 1997] Handouts and Program Files for Spring 1997 Semester, as taught
by Feldman, Michael B., http://www.seas.gwu.edu/classes/csciSl/spring97/index.html.

[Fisher, 1991] Fisher, Allan L., and Gross, Thomas, "Teaching the Programming
of Parallel Computers", The Papers of the Twenty-second SIGCSE Technical
Symposium on Computer Science Education, San Antonio, Texas, SIGCSE Bulletin,
Volume 23, Number 1, March 1991, pages 102-107.

[Fisher, 1992] Fisher, Allan L., and Gross, Thomas, "Teaching Empirical
Performance Analysis of Parallel Programs", The Papers of the Twenty-third SIGCSE
Technical Symposium on Computer Science Education, Kansas City, Missouri, SIGCSE
Bulletin, Volume 24, Number 1 March 1992, pages 309-313.

[Forsythe, 1996] Forsythe, Ronald G., and Mavrovouniotis, Michael L., "On The
Need For Object-Oriented Programming In Engineering Curricula", Computers In
Education, Volume 6, Number 2, April-June 1996, pages 50-55.

[Foster, 1997] Foster, Ian, Building and Designing Parallel Programs fOnline).
Concepts and Tools Parallel Software Engineering, Addison-Wesley, Reading
Massachusetts, 1997. http://www.cs.rdg.ac.uk/dbpp/text/nodel .html.

[Fox, 1997] Fox, Geoffrey C. and Furmanski, Wojtek, "Java for parallel
computing and as a general language for scientific and engineering simulation and
modeling", Concurrency: Practice and Experience, Volume 9, Number 6, June 1997,
pages 415-426.

[Gehani, 1991] Gehani, Narain, Ada: Concurrent Programming. Silicon Press,
Summit New Jersey, 1991.

[Ginat, 1996] Ginat, David, "Efficiency Of Algorithms For Programming
Beginners", The Papers of the Twenty-seventh SIGCSE Technical Symposium on
Computer Science Education, Philadelphia, Pennsylvania, SIGCSE Bulletin, Volume 28,
Number 1, March 1996, pages 256-260.

[Gomaa, 1993] Gomaa, Hassan, Software Design Methods for Concurrent and
Real-Time Systems. Addison-Wesley, Reading, Massachusetts, 1993.

[Goudreau, 1997] Goudreau, Mark W. "Unifying Software and Hardware in a
Parallel Computing Curriculum", Conference Proceedings, Second Forum on Parallel
Computing Curricula, Newport Rhode Island, June 1997,
http://www.cs.dartmouth.edu/FPCC/papers/goudreau.htmI.

171

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.seas.gwu.edu/classes/csciSl/spring97/index.html
http://www.cs.rdg.ac.uk/dbpp/text/nodel
http://www.cs.dartmouth.edu/FPCC/papers/goudreau.htmI

www.manaraa.com

[Guzdial, 1995] Guzdial, Mark, "Centralized Mindset: A Student Problem with
Object-Oriented Programming", The Papers of the Twenty-sixth SIGCSE Technical
Symposium on Computer Science Education, Nashville, Tennessee, SIGCSE Bulletin,
Volume 27, Number 1 March 1995, pages 182-185.

[Harlan, 1995] Harlan, Robert M., and Akulis, Joseph G., "Parallel Threads:
Parallel Computation Labs For CS3 And CS 4",", The Papers of the Twenty-sixth
SIGCSE Technical Symposium on Computer Science Education, Nashville, Tennessee,
SIGCSE Bulletin, Volume 27, Number 1 March 1995, pages 141-145.

[Hartley, 1992] Hartley, Stephen, J. "Experience with the Language SR in an
Undergraduate Operating Systems Course", The Papers of the Twenty-Third SIGCSE
Technical Symposium on Computer Science Education, Kansas City, Missouri, SIGCSE
Bulletin, Volume 24, Number 1, March 1992, pages 176-180.

[Hartman, 1991] Hartman, Janet, and Sanders, Dean, "Teaching a Course in Parallel
Processing with Limited Resources", The Papers of the Twenty-second SIGCSE
Technical Symposium on Computer Science Education, San Antonio, Texas, SIGCSE
Bulletin, Volume 23, Number 1, March 1991, pages 97-101.

[Hartman, 1993] Hartman, Janet, and Sanders, Dean, "Data Parallel Programming:
A Transition from Sequential to Parallel Computing", The Papers of the Twenty-Fourth
SIGCSE Technical Symposium on Computer Science Education, Indianapolis, Indiana,
SIGCSE Bulletin, Volume 25, Number 1 March 1993, pages 96-100.

[Hill, 1991] Hill, Jane C., and Wayne, Andrew, "A CYK Approach To Parsing
In Parallel: A Case Study", The Papers of the Twenty-second SIGCSE Technical
Symposium on Computer Science Education, San Antonio, Texas, SIGCSE Bulletin,
Volume 23, Number 1, March 1991, pages 240-245.

[Hintze, 1999] Hintze, Jerry L., User's Guide. NCSS 2000. Statistical System for
Windows. Number Cruncher Statistical Systems, January 1999.

[Howard, 1996] Howard, Richard A., Carver, Curtis A., and Lane, William D.,
"Felder's Learning Styles, Bloom's Taxonomy, And Kolb Learning Cycle: Tying It All
Together In The CS2 Course", The Papers of the Twenty-seventh SIGCSE Technical
Symposium on Computer Science Education, Philadelphia, Pennsylvania, SIGCSE
Bulletin, Volume 28, Number 1, March 1996, pages 227-231.

[Huck, 1974] Huck, Schuyler W., Cormier, William H., Bounds, William G. Jr.,
Reading Statistics and Research. Harper Collins, 1974.

[Huck, 1996] Huck, Schuyler W., Cormier, William H., Reading Statistics and
Research. Harper Collins, 1996.

172

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

[Hummel, 1997] Hummel, Susan F., Ngo, Ton, and Srinivasan, Harini, "SPMD
programming in Java", Concurrency: Practice and Experience, Volume 9, Number 6,
June 1997, pages 621-631.

[Hurley, 1994] Hurley, Stephen, Department of Computer Science, University of
Wales at Cardiff, England, http://www.cs.cf.ac.uk.

[Indiana, 1998] Computer Science Department, Indiana University,
http://www.cs.indiana.edu/dept/acad.

[Jackson, 1991] Jackson, David, "A Mini-Course on Currency", The Papers of the
Twenty-second SIGCSE Technical Symposium on Computer Science Education, San
Antonio, Texas, SIGCSE Bulletin, Volume 23, Number 1, March 1991, pages 92-96.

[JaJa, 1992] JaJa, Joseph, An Introduction to Parallel Algorithms. Addison-
Wesley, Reading Massachusetts, 1992.

[Jin, 1995] Jin, Lan, and Yang, Lan, "A Laboratory For Teaching Parallel
Computing On Parallel Structures", The Papers of the Twenty-sixth SIGCSE Technical
Symposium on Computer Science Education, Nashville, Tennessee, SIGCSE Bulletin,
Volume 27, Number 1, March 1995, pages 71-75.

[John, 1992] John, David, "Integration of Parallel Computation into
Introductory Computer Science", The Papers of the Twenty-third SIGCSE Technical
Symposium on Computer Science Education, Kansas City, Missouri, SIGCSE Bulletin,
Volume 24, Number 1 March 1992, pages 281-285.

[John, 1994] John, David J., "NSF Supported Projects: Parallel Computation as
an Integrated Component in the Undergraduate Curriculum in Computer Science", The
Papers of the Twenty-fifth SIGCSE Technical Symposium on Computer Science
Education, Phoenix, Arizona, SIGCSE Bulletin, Volume 26, Number 1, March 1994,
pages 357-361.

[Katsinis, 1994] Katsinis, Constantine, "The Development of a Multi-Processor
Personal Computer in a Senior Computer Design Laboratory", The Papers of the Twenty-
Fifth SIGCSE Technical Symposium on Computer Science Education, Phoenix, Arizona,
SIGCSE Bulletin, Volume 26, Number 1, March 1994, pages 349-352.

[King, 1992] King, K. N., "The Evolution of the Programming Language
Course", The Papers of the Twenty-third SIGCSE Technical Symposium on Computer
Science Education, Kansas City, Missouri, SIGCSE Bulletin, Volume 24, Number 1,
March 1992, pages 213-219.

[Kitchen, 1992] Kitchen, Andrew T, Schaller, Nan C., and Tymann, Paul T.,
"Game Playing As A Technique For Teaching Parallel Computing Concepts, SIGCSE
Bulletin, Volume 24, Number 3, September 1992, pages 35-38.

173

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.cs.cf.ac.uk
http://www.cs.indiana.edu/dept/acad

www.manaraa.com

[Koffinan, 1984] Koffinan, Elliot B., Miller, P. L., Wardle, Caroline, E.,
"Recommended Curriculum for CS1,1984", Communications of the ACM, Volume 27,
Number 10, October 1984, pages 998-1001.

[Koffinan, 1985] Koffinan, Elliot B., Stemple, David, Wardle, Caroline, E.,
"Recommended Curriculum for CS2, 1985", Communications of the ACM, Volume 28,
Number 8, August 1985, pages 815-818.

[Rolling, 1996] Rolling, Michael, and Rosenberg, John, "An Object-Oriented
Program Development Environment For The First Programming Course", The Papers of
the Twenty-seventh SIGCSE Technical Symposium on Computer Science Education,
Philadelphia, Pennsylvania, SIGCSE Bulletin, Volume 28, Number 1, March 1996, pages
83-87.

[Kotz, 1995] Kotz, David, "A Data-Parallel Programming Library For Education
(DAPPLE)", The Papers of the Twenty-Sixth SIGCSE Technical Symposium on
Computer Science Education, Nashville, Tennessee, SIGCSE Bulletin, Volume 27,
Number 1 March 1995, pages 76-81.

[Langan, 1993] Langan, David D., "A Multi-Purpose Dataflow Simulator", The
Papers of the Twenty-Fourth SIGCSE Technical Symposium on Computer Science
Education, Indianapolis, Indiana, SIGCSE Bulletin, Volume 25, Number 1 March 1993,
pages 87-90.

[Leska, 1996] Leska, Chuck, Barr, John, and Smith King L. A., "Multiple
Paradigms In CS 1", The Papers of the Twenty-seventh SIGCSE Technical Symposium
on Computer Science Education, Philadelphia, Pennsylvania, SIGCSE Bulletin, Volume
28, Number 1, March 1996, pages 343-347.

[Lewis, 1997] Lewis, John, and Loftus, William, Java Software Solutions.
Addison-Wesley, Reading, Massachusetts, 1997, table of contents and outline available at
http://cseng.aw.com/bookdetail.arv?ISBN=0-201 -57164-1 &otvpe=0.

[Liu, 1996] Liu, Mei-Ling, and Blanc, Lori, "On The Retention of Female
Computer Science Students",", The Papers of the Twenty-seventh SIGCSE Technical
Symposium on Computer Science Education, Philadelphia, Pennsylvania, SIGCSE
Bulletin, Volume 28, Number 1, March 1996, pages 32-36.

[Manchester, 1998] Computer Science Department, University of Manchester,
Manchester, England, http://www.cs.man.edu.uk.

[Mason, 1998] Course Description Spring 1998, Department of Computer
Science, George Mason University, Fairfax, Virginia, http://www.cs.gmu.edu/svllabus/svHabi-
sprine98/csl 12.html.

174

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://cseng.aw.com/bookdetail.arv?ISBN=0-201
http://www.cs.man.edu.uk
http://www.cs.gmu.edu/svllabus/svHabi-

www.manaraa.com

[Mayer, 1992] Mayer, Richard E., "Cognition and Instruction: Their Historic
Meeting Within Education Psychology", Journal of Educational Psychology, Volume 84,
Number 4, pages 405-412.

[McDonald, 1992] McDonald, Chris, "Teaching Concurrency with Joyce and Linda",
The Papers of the Twenty-third SIGCSE Technical Symposium on Computer Science
Education, Kansas City, Missouri, SIGCSE Bulletin, Volume 24, Number 1, March 1992,
pages 46-52.

[McDonald, 1997] McDonald, Chris, and Kazemi, Kamram, "Improving the PVM
Teaching Environment", The Papers of the Twenty-eighth SIGCSE Technical
Symposium on Computer Science Education, San Jose, California, SIGCSE Bulletin,
Volume 29, Number 1, March 1997, pages 219-223.

[McMaster, 1999] Graduate Courses, McMaster University Computer Science,
Hamilton, Ontario, Canada, http://www.dcss.mcmaster.ca/graduate/courses/.

[Meredith, 1992] Meredith, Marsha J., "Introducing Parallel Computing into the
Undergraduate Computer Science Curriculum: a Progress Report", The Papers of the
Twenty-Third SIGCSE Technical Symposium on Computer Science Education, Kansas
City, Missouri, SIGCSE Bulletin, Volume 24, Number 1, March 1992, pages 187-191.

[Miller, 1994] Miller, Russ, "The Status of Parallel Processing Education",
Special Report, Computer Volume 27, Number 8, August 1994, pages 40-43.

[Millersville, 1999] Department of Computer Science, Millersville University,
Millersville, Pennsylvania, http://iml.millersv.edu/cs36Q.html.

[Monash, 1998] Computer Science Department, Monash University, Melbourne,
Australia, http://www.cs.monash.edu.au.

[NPAC, 1994] High Performance Fortran Forum, Northeast Parallel Architectures
Center, Syracuse University, Syracuse, New York, http://www.npac.svr.edu/hpfa/hpffi2/hop I/.

[Olsson, 1995] Olsson, Ronald A., and McNamee, Carole M., "Tools for Teaching
CCRs, Monitors, and CSP Concurrent Programming Concepts", SIGCSE Bulletin,
Volume 27, Number 2 June 1995, pages 31-40.

[Olszewski, 1993] Olszewski, Jacek, "CSP Laboratory", The Papers of the Twenty-
Fourth SIGCSE Technical Symposium on Computer Science Education, Indianapolis,
Indiana, SIGCSE Bulletin, Volume 25, Number 1 March 1993, pages 91-95.

[Oracle, 1992] Oracle Corporation, Oracle7 Server Concepts Manual, Part
Number 6693-70-1292, December 1992, pages 25-1 - 25-5.

175

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.dcss.mcmaster.ca/graduate/courses/
http://iml.millersv.edu/cs36Q.html
http://www.cs.monash.edu.au
http://www.npac.svr.edu/hpfa/hpffi2/hop

www.manaraa.com

[Osborne, 1993] Osborne, Martin, and Johnson, James L., "An Only Undergraduate
Course in Object-Oriented Technology", The Papers of the Twenty-Fourth SIGCSE
Technical Symposium on Computer Science Education, Indianapolis, Indiana, SIGCSE
Bulletin, Volume 25, Number 1 March 1993, pages 101-106.

[Ostle, 1963] Ostle, Bernard, Statistics In Research. Iowa State University Press,
Ames, Iowa, 1963.

[Pacheco, 1997] Pacheco, Peter, "Using MPI to Teach Parallel Computing",
Conference Proceedings, Second Forum on Parallel Computing Curricula, Newport
Rhode Island, June 1997, http://www.cs.dartmouth.edu/FPCC/DaDers/Dacheco.html.

[Papoulis, 1991 Papoulis. Athanasios. Probability. Random Variables, and
Stochastics Processes. McGraw-Hill, New York, New York, 1991.

[Paralogic, 1996] Paralogic Inc., Bethlehem, Pennsylvania, 1996,
http://www.plogic.com/para-per.html.

[Penn, 1998] School of Engineering and Applied Science, University of
Pennsylvania, http://www.seas.upenn.edu/class.html.

[Perrott, 1987] Perrott, R. H., Parallel Programming. Addison-Wesley,
Wokingham, England, 1987.

[Queens, 1998] Department of Computer Science, The Queen's University of
Belfast, Belfast, Northern Ireland, http://www.cs.oub.ac.uk/cs.

[Reading, 1997] Department of Computer Science, The University of Reading,
http://www.cs.rdg.ac.uk/cs/teaching/units.html.

[Reid, 1994] Reid, Richard J., "Introductory Object-Oriented Programming
Projects Using Simulation And Animation", Computers In Education, Volume 4, Number
1, January-March 1994, pages 11-15.

[Rensselaer, 1998] Computer Science Department, Rensselaer University,
http://www.cs.rpi.edu/undergrad/BS.html.

[Reynolds, 1996] Reynolds, Charles, and Fox, Christopher, "Requirements For A
Computer Science Curriculum Emphasizing Information Technology Subject Area:
Curriculum Issues", The Papers of the Twenty-seventh SIGCSE Technical Symposium
on Computer Science Education, Philadelphia, Pennsylvania, SIGCSE Bulletin, Volume
28, Number 1, March 1996, pages 247-251.

[Schaller, 1995] Schaller, Nan C., Kitchen, Andrew T., "Experiences in Teaching
Parallel Computing - Five Years Later", SIGCSE Bulletin, Volume 27, Number 3
September 1995, pages 15-20.

176

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.cs.dartmouth.edu/FPCC/DaDers/Dacheco.html
http://www.plogic.com/para-per.html
http://www.seas.upenn.edu/class.html
http://www.cs.oub.ac.uk/cs
http://www.cs.rdg.ac.uk/cs/teaching/units.html
http://www.cs.rpi.edu/undergrad/BS.html

www.manaraa.com

[Schwartz, 1988] Schwartz, Mischa, Telecommunications Networks: Protocols.
Modeling and Analysis. Addison-Wesley, Reading, Massachusetts, 1988.

[Sebesta, 1989] Sebesta, Robert W., Concepts of Programming Languages.
Benjamin / Cummings, Redwood City, California, 1989.

[Sisal, 1996] SISAL, Computer Research Group at Lawrence Livermore
National Laboratory, November 1996, ftp://sisai.llnl.gov/Dub/sisal.

[Smith, 1996] Smith, Harry F., and Plusnick, Patrick, "Image Processing As An
Example Of Parallelism Applied To Graphics", The Papers of the Twenty-seventh
SIGCSE Technical Symposium on Computer Science Education, Philadelphia,
Pennsylvania, SIGCSE Bulletin, Volume 28, Number 1, March 1996, pages 363-367.

[Toll, 1995] Toll, William E., "Decision Points In The Introduction Of Parallel
Processing Into The Undergraduate Curriculum", The Papers of the Twenty-sixth
SIGCSE Technical Symposium on Computer Science Education, Nashville, Tennessee,
SIGCSE Bulletin, Volume 27, Number 1 March 1995, pages 136-140.

[Toll, 1997] Toll, William E., "Parallel Processing Integration in the Computer
Science Curriculum: A Question of Balance", Conference Proceedings, Second Forum on
Parallel Computing Curricula, Newport Rhode Island, June 1997,
http://www.cs.dartmouth.edu/FPCC/papers/Toll/toll.html.

[Trono, 1994] Trono, John A. "A New Exercise in Concurrency", SIGCSE
Bulletin, Volume 26, Number 3, September 1994, pages 8-10.

[Turner, et al, 1991] ACM/IEEE-CS Joint Curriculum Task Force, "Computing
Curricula 1991", Communications of the ACM, Volume 34, Number 6, June 1991, pages
68-84.

[VanScoy, 1994] VanScoy, Frances L., "Power Point Documents in Support of an
Ada-Based CS 1 Course", Asset Source for Software Engineering Technology (ASSET),
1994, http://www.asset.com/WSRD/abstracts/ABSTRACT 813.html.

[Villanova, 1998] Computer Sciences Department, Villanova University,
Philadelphia, Pennsylvania, http://www.csc.vill.edu/courses.shtml.

[Wake, 1998] Department of Mathematics and Computer Science, Wake Forest
University, http://www.mthcsc.wfii.edu/mfo.html.

[Washington, 1998] Department of Computer Science, School of Engineering and
Applied Science, Washington University in St. Louis,
http://www.wustl.edu/~klg/cslOI/home.html.

177

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ftp://sisai.llnl.gov/Dub/sisal
http://www.cs.dartmouth.edu/FPCC/papers/Toll/toll.html
http://www.asset.com/WSRD/abstracts/ABSTRACT
http://www.csc.vill.edu/courses.shtml
http://www.mthcsc.wfii.edu/mfo.html
http://www.wustl.edu/~klg/cslOI/home.html

www.manaraa.com

[Washington, 1999] Department of Computer Science, School of Engineering and
Applied Science, Washington University in St. Louis,
http ://www.cs.wustl.edu/~sandholm/cs520.html.

[Wein, 1997] Wein, Joel, "An Active Learning Approach to Teaching Parallel
Algorithms", Conference Proceedings, Second Forum on Parallel Computing Curricula,
Newport Rhode Island, June 1997, http://www.cs.dartmouth.edu/FPCC/paDers/wein.html.

[Wheeler, 1996] Wheeler, David A., Ada 95 The Lovelace Tutorial. Springer-
Verlag, New York, New York, 1996.

[Yang, 1995] Yang, Lan, and Jin, Lan, "Integrating Parallel Algorithm Design
With Parallel Machine Models", The Papers of the Twenty-sixth SIGCSE Technical
Symposium on Computer Science Education, Nashville, Tennessee, SIGCSE Bulletin,
Volume 27, Number 1 March 1995, pages 131-135.

[Yue, 1991] Yue, Kwok-bun, "Dining Philosophers Revisited, Again", SIGCSE
Bulletin, Volume 23, Number 2, June 1991, pages 60-64.

[Yue, 1994] Yue, Kwok-bun, "An Undergraduate Course in Concurrent
Programming Using Ada", SIGCSE Bulletin, Volume 26, Number 4, December 1994,
pages 59-62.

178

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.cs.wustl.edu/~sandholm/cs520.html
http://www.cs.dartmouth.edu/FPCC/paDers/wein.html

www.manaraa.com

APPENDIX A. DEFINITIONS

Concurrent — "two or more things can be done independently, but not necessarily on

different processors [one or more processors]" [Paralogic, 1996]

Concurrent Program — "a set of ordinary sequential programs which are executed in

abstract parallelism" [Ben-Ari, 1990]

Dependent Variable — "the data that the researcher analyzes" [Huck, 1974]

External Validity - "refers to representativeness or generalizability" of a study, "the

extent Q the results of a study can be generalized to other populations, settings,

treatments, or measurement variables" [Huck, 1974]

Independent Variable — that which "is manipulated by the researcher" [Huck, 1996] in a

study

Internal Validity — "refers to casual relationships" between the independent and

dependent variables such that a "researcher [can] infer a cause-and-effect relationship"

[Huck, 1974]

Novice (as in student programmer) — student entering their first computer science

programming course who has received no or inconsequential exposure to collegiate

programming, professional programming, and tool creation programming.

Parallel — "two or more things can be done independently at the same time on different

processors" [Paralogic, 1996]

Parallel Computer — "a collection of processors, typically of the same type,

interconnected in a certain fashion to allow the coordination of their activities and the

exchange of data" [Jaja, 1992]

179

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Parallel Program — a concurrent program designed for execution on parallel hardware

(implies more than one processor)

Semaphore -- "an integer-valued variable which can take only non-negative values" [Ben-

Ari, 1990]. In this experiment semaphores are modeled as a collection of distinct states.

180

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

APPENDIX B. SYLLABUS AND INSTRUCTIONS

The syllabus and instructions for both the control and treatment groups are the

same with the following exceptions:

• Schedule of instruction for the last eight weeks of each group

• Dates instruction given

The syllabus and instructions given in this section are extracts of the Web pages for the

Fall 1998 class, a treatment group. Therefore, the schedule of instruction for the control

group, Fall 1997, is given on the next page (preceding the Web pages). As 20 March

1999, the complete set of Web pages for the experiment were Web accessible at the

URLs below:

• Control group — http://www.seas.ewu.edu/classes/csci51/fall97/index.html

• Treatment group one -- http://www.seas.ewu.edu/classes/csci51/sprine98/index.html

• Treatment group two “ http://www.seas.ewu.edu/classes/csci51/fall98/index.html

The syllabus and instructions on the following pages are in Web page format.

The page format for this dissertation is different than the original Web page format of the

text. Therefore, the appearance of the text is different when viewed using a browser.

Michael Feldman wrote the vast majority of this material. Dr. Feldman taught the

class prior to the experiment. The investigator made modifications to the material.

Excluded from this section are the Unix and compiler instruction materials that

were presented to the students at the beginning of the course.

181

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.seas.ewu.edu/classes/csci51/fall97/index.html
http://www.seas.ewu.edu/classes/csci51/sprine98/index.html
http://www.seas.ewu.edu/classes/csci51/fall98/index.html

www.manaraa.com

Class Schedule, Control Group, Fall 1997

8/26-8/28 Weekl Chapter 1 Introduction
9/2-9/4 Week 2 Chapter 2 Introduction to Programming with Ada 95

9/9-9/11 Week 3 Chapter 3 Introduction to Design; Enumeration Types;
the Spider

9/16-9/18 Week 4 Chapter 3 Using Packages
9/23-9/25 Week 5 Chapter 4 Decision Statements
9/30-10/2 Week 6 Chapter 4 Writing Functions and Packages
10/7-10/9 Week 7 Chapter 5 Counting Loops; Introduction to External Files

10/14 Week 8 Review for Midterm Exam
10/16 ----- MIDTERM EXAM - covers Chapters 1-5

10/21-10/23 Week 9 Chapter 6 General Loops; Exception Handling

10/28-10/30 Week 10 Chapter 6 Writing Procedures; Parameter Modes;
Robust Input

11/4-11/6 Week 11 Chapter 7 Case Statements; Math Library; Random
Numbers

11/11-11/13 Week 12 Chapter 8 Composite Types: Records
11/18-11/20 Week 13 Chapter 8 Composite Types: Arrays

11/25 Week 14 Chapter 9 A Systematic View of Strings and Files
12/2-12/4 Week 15 Chapter 9 Strings and Files, continued

12/9 Week 16 Review for Final Exam (in Reading Period)
12/16 FINAL EXAM - covers Chapters 1-9

182

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

READ THIS AND KEEP IT HANDY! IT IS VERY
IMPORTANT!

The George Washington University
School of Engineering and Applied Science

Department of Electrical Engineering and Computer Science

CSci 51 — Introduction to Computing — Fall 1998
Lecture Times: Tuesday/Thursday, 5:45 - 7:00 PM
Lab/Recitation Times: 50 minutes, various times

Chester B. Lund
Phone: 703-610-2954 (office)

Electronic Mail: clund@seas.gwu.edu
Office hours: After class on Thursday

Optional Extra Help Classes: Friday 5:45 - 7:00 PM (Starting October 23)
Required Textbook:
Feldman and Koffinan, Ada 95: Problem Solving and Program Design (2nd edition). Addison
Wesley, 1996.
ISBN 0-201-87009-6 (textbook alone);
ISBN 0-201-30485-6 (textbook bundled with Aonix ObjectAda Special Edition CD-ROM).

Read each chapter during the week it is assigned. The book discusses much more than I can cover
in class, and I will cover things not in the book. You will get much more out of the class if you
are well-prepared.

Course Outline:

183

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

mailto:clund@seas.gwu.edu

www.manaraa.com

8/25-8-27 Week 1 Chapter 1 Introduction
9/1-9/3 Week 2 Chapter 2 Introduction to Programming with Ada 95

9/8-9/10 Week 3 Chapter 3 Introduction to Design; Enumeration Types;
the Spider

9/15 Week 4 Chapter 3 Using Packages
9/17 ----- Chapter 4 Decision Statements

9/22-9/24 WeekS Chapter 4 Writing Functions and Packages

9/29-10/1 Week 6 Chapter 5 Counting Loops; Introduction to External
Files

10/6-10/8 Week 7 Computer Architecture; Models of
Computation; Mid-term Review

10/13 Week 8 Chapter 6 Exception Handling; General Loops
10/15 ----- MIDTERM EXAM - covers Chapters 1-5

10/20-10/22 Week 9 Chapter 6 Exception Handling; Writing Procedures;
Parameter Modes; Tasks *

10/27-10/29 Week 10 Chapter 8 Composite Types: Arrays

11/3-11/5 Week 11 Chapter 8 Composite Types: Records; Concurrent
Modeling and Constructs *

11/10-11/12 Week 12 Chapter 7 Case Statements; Math Library; Message
Passing *

11/17-11/19 Week 13 More on Data Types; Last Project, Number
9; Concepts of Concurrent Programming *

11/24 Week 14 Chapter 9 Systematic View of Strings and Files
(started); Shared Memory *

11/26 Week 14 Thanksgiving Day Holiday

12/1-12/3 Week 15 Chapter 9 Systematic View of Strings and Files
(concluded); Efficiency and Amdahl's Law *

12/8 Week 16 Final Exam Review (Last Class)
12/15 FINAL EXAM (Tentative Date)

Supplimental materials:
Topics related to concurrency are marked in the course outline with an Supplimental
materials about concurrency are provided to the student beginning with course week 9.

Attendance:
Attendance is required in both lecture and lab, and important work will be done in both. If you
have an unavoidable need to be absent, you do not need special permission, but you are
responsible for the work covered even if you are not in class.

Office hours:
Office hours are after class on Thursday. Office hours, both the lecturer's and the lab instructor’s,
are an important way for you to get help or to discuss anything you have on your mind. We are
there to help you; that is an important part of our job. Please make good use of these hours; you
are cheating yourself if you do not.

184

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Electronic mail (e-mail):
Part of your first-week assignment is to learn to write and send e-mail. Both the lecturer and the
lab instructor read e-mail at least once a day; you are sure to get a quick response if you make
good use of this system. If you have never used e-mail before, you are in for a treat—it is fun!
Programming Projects:
I will assign a project every week, which will be due the following week. Each project will build
on the work done in previous projects, so it is in your interest to keep up with the project work.
There will be about 10 projects.

Each project will be graded on a 0-20 point basis. An incomplete submission is better than none;
you will get credit where credit is due. I will accept late projects, subject to a "late fee" of 4 points
per week of lateness. Each project is due at the start o f the class on the due date; projects
submitted after the lecture has begun will be counted as one week late.
Examinations:
There will be a two-hour midterm and a two-hour final exam, both strictly timed. These will be
open-book, open-notes exams. If you are coming to class regularly, and keeping up with the
reading and the projects, the exams should not be difficult for you. Exams will require a mixture
of reading and interpreting short program segments, writing short program segments, and short
"essay" questions.
Quizzes:
There may be one or more unnanounced quizzes during the lecture period. The best way to avoid
unannounced quizzes is to come to class regularly, participate actively, and keep up with the
reading.
Grading:
Your semester grade will be calculated as follows:

• Midterm Exam 25%
• Final Exam 39%
• Projects 36% (about 4% per project / last project counts double)

The last project, Project 9, and the Final Exam together are 47% of the total grade; they both
occur at the semester's end.

I will eliminate the lowest project grade for each student from Project #1 thru Project #8 only
(Project #9 will not be eliminated). However, I will not give a semester grade that is more than
one grade higher than the project average. That is, if your project average is a "C", you will not be
able to get a semester grade higher than "B". Quizzes, if any, will be counted in according to how
many there are.

I keep grade records strictly "by the numbers"; any conversion to letter grades, and any "curving"
of the final grade results, is done only at the very end of the semester, when I have all the
semester data.

185

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

The George Washington University
School of Engineering and Applied Science

Department o f Electrical Engineering and Computer Science
CSci SI — Introduction to Computing

Preparation and Grading of Programming Projects:
the Importance of Professionalism

Introduction

Project Preparation

Project Grading

Schedule

Introduction
This course is taught under the assumption that the students have no previous experience with
programming or program design. Projects are therefore of a difficulty and complexity that a
beginner can handle.

It is, however, important for you to realize that one of the purposes of this course is to help you
begin your preparation for a profession. If you continue in computing courses, you will find that
your experience here will serve you well. Even if you never take another course in computing,
you will have learned much about the kinds of techniques professionals use and especially about
the courtesy that they are expected to show to others needing to read and understand their work.

The conventional scheme used in universities to assess a student's accomplishments is the grade.
We therefore use a grading system to assess your success not only in writing a program that
"works," but also in completing a project that meets the standards of professionalism we have set.
Meeting these standards is neither especially difficult, nor especially burdensome in terms of your
time.

We hope that you will realize that we are not just being bureaucratic, and that you will understand
the benefits of what we are asking you to do. In any event, we are giving you, through the grading
system, a tangible incentive to do it.

Project Preparation
In developing a project, you will use the Case Study form as illustrated many times in the
Feldman/Koffman book. Specifically, you need to prepare and submit all the sections of the Case
Study: Problem Statement, Analysis, Data Requirements, Algorithm with refinements, Test Plan,

186

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Coding, and Testing. It is acceptable to attach a copy of the project handout and mark it as
Problem Statement

Programming projects are to be submitted in paper form, because the graders will need to make
notes on them. Projects will be turned in at the start of lecture and returned during lab. Be sure
your name and lab section are on each piece, in case they get accidentally separated. Put the
pieces together with a paper clip, not a staple.

Your submission must contain:
• Your Case Study document, printed from a computer or neatly hand-written. The

document must show, on the first page, your name, e-mail address, lab section, project
number, date submitted).

• One or more listing (.lss/.lsb) files, according to the project assignment sheet.
• One or more compile/link/execute scripts, according to the assignment sheet. Run the

program with enough test data that you can show that it works as advertised. Choose test
data carefully!

• Each program source file must have, at the beginning of the program, a "banner
comment" in the following form:

— Name: Elvis Presley
— E-mail Address: elvis@seas.gwu.edu
— Lab Section: CSci 51-30

— Project #1
— Date: Feb. 1, 1996
— Brief Project Description:
— This project requires the computation of the American
— price for a quantity of food purchased in Canada,
— where the food is purchased in kilos and the price
— is charged in Canadian dollars.

Indentation and comments in the program should follow the style of those in the book, and reflect
the major steps o f the algorithm as given in the Design Document. Use comments to document
each identifier, e.g.

Quantity: Float; — input - weight of food in kilos
USPrice: Float; — output - US price of the food

Project Grading
Your grade will be assigned on the basis of 20 points; partial credit is always given where
appropriate.

• up to 6 points, or 30%, are given for the Analysis, Data Requirements, and
Algorithm/Refinements part of your Case Study document

• up to 4 points, or 20%, are given for the Testing part of your document in which you will
describe and justify the test cases you will use to test your program. The grader will read
your test plan and compare it with the actual test shown in your script.

187

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

mailto:elvis@seas.gwu.edu

www.manaraa.com

• up to 4 points, or 20%, are given for the structure and style of your program, including
indentation, consistent capitalization, blank lines for readability, appropriate level of
comments, etc.

• up to 6 points, or 30%, are given for the correctness of your program as shown by the
source listing and test run(s).

Note that a complete and correct design and test plan will earn 50% of the grade, even if you do
not complete the program, and that a correctly developed and formatted program will earn an
additional 20%, even if it does not work. This weighting o f grades is quite intentional, and is
typical of modem computing courses. It is also typical in industry for the coding part of a project
to absorb only 30% of the resources.

Schedule
Your project is due on the assigned date at the beginning o f class . A project brought in during
the class will normally be counted as late.

Many teachers refuse to accept late projects at all, but in this course you are permitted to turn in
projects at any time. Your grade on the project will, however, be reduced by 4 points, or 20%, for
each week it is late.

Note that if you are extremely busy, you can buy an additional week of time for a 4-point price.
You do not need permission to do so; just turn it in late. The "lateness fee" will be waived only
for documented medical situations or other unusual circumstances. "The computer was down" is
not an unusual circumstance; our response will always be "the computer often goes down; you
should have allowed yourself more time."

188

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

The George Washington University
School of Engineering and Applied Science

Department o f Electrical Engineering and Computer Science

CSci 51 — Introduction to Computing

PLAGIARISM AND COLLABORATION ON PROGRAMMING
PROJECTS

The project work you turn in must represent your own work and not the work of someone else.
On the other hand, it is unreasonable to expect that you will work in a complete vacuum, without
ever speaking to a classmate. The purpose of this note is to give you some guidance about the
areas in which it is appropriate to discuss project phases with your classmates. Violating these
guidelines may result in a charge of academic dishonesty.
Plagiarism
The term plagiarism describes an attempt to claim work as your own, which you have copied
from another person, whether that other person knows about it or not. In a class like this,
plagiarism includes copying program code, data, documentation, etc. Plagiarism is simply not
allowed. If you submit another student's work as your own, you will be charged with a violation
of the GW Academic Integrity Code.
Collaboration
Collaboration is defined as two or more students working together on a phase of a project.
Working together does not mean that one student does the work and the other student just copies
it! Collaboration is allowed under certain conditions, as long as you are honest about it.

You are taking this class to learn important fundamental things about computing, and I must give
you a grade that fairly represents what I think you've learned. Therefore, I need to know that your
work is your work, so I need to limit the collaboration somewhat. For purposes of projects in this
class, here are some guidelines as to which phases of a project are appropriate for collaboration,
and which are inappropriate.

189

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

OK Preliminary Analysis of Problem
OK Developing the Algorithm
NO Developing a Test Plan
NO Coding in the Programming Language
NO Proof-reading the program before compiling
OK Interpreting errors at compilation time
OK Interpreting errors at execution time
NO Writing Up the Case Study

"Truth in Advertising"
If you collaborate with another student, for each permitted phase of the project, you must give
your "partner's" name in your documentation for that phase.
Save Your Projects!
You are required to save all your projects until the end of the semester, after grades have been
reported. Be prepared to re-submit these to the instructor if he or she asks you to do so.
Protect Yourself
If you suspect that another student is misusing your work (for example, one of your printouts
disappeared), report this immediately to the instructor, to protect yourself against a charge of
plagiarism if your work is copied by another student.
Read the University Academic Integrity Code carefully.

190

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

APPENDIX C. STUDENT ACKNOWLEDGEMENT FORM

Acknowledgement Form This £ozm has boon reformatted to fit a
= = = = = = = = = = = = = = = single page in this document.

Introduction
This offering of CSci 51 includes some experimental material that is part of a doctoral research
study. The information resulting from your participation in this class will be used to help the
researchers understand (1) how well students learn certain material and (2) how quickly students
learn certain material. By your participation, you will be contributing to computer science
education research.

Procedure
Your involvement in this study includes attending class, doing homework, and taking
examinations. There are no additional requirements imposed on you. However, as a part of the
research, your compilation and linking of Ada programs is being recorded.

Risk and Benefits
The only risk to you is that some of your computer usage is being recorded. The benefit to you is
that the instructor can assist you with your homework by accessing your recorded computer
usage. The recorded information (compiling and linking of Ada programs) is NOT used in
computing your grade.

Confidentially
Your individual data can and will be discussed only among the researchers. If the results are
made available to any other persons, your identity will in no way be made known, or associated
with your results.

Rights
The recorded material (compiling and linking of Ada programs) is NOT used in computing your
grade. The recording process is automatic for all students, so the only effective way to withdraw
from the recording process is to withdraw from the course.

Contacts and Questions
The researchers involved in this study are: Chester Lund and Dr. Michael Feldman of The George
Washington University. If you have any questions regarding this consent form or this study,
please contact Chester Lund at clund@seas.gwu.edu.

We appreciate your participation in this study.

My signature below indicates I have read the above information and agree to participate in this
study.

Your Name (printed) __

Your Name (signed) __

Student ID Date___________ ___

191

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

mailto:clund@seas.gwu.edu

www.manaraa.com

APPENDIX D. PROJECT ASSIGNMENTS, CONTROL GROUP

The project assignments for the control group and the treatment groups were

prepared as Web pages. The page format for this dissertation is different than the original

Web page format of the text. Therefore, the appearance of the text is different when

viewed using a browser. Further, in order to make selected information fit on a single

page (as it did in the project assignment handouts), changes to font size and paragraph

spacing have been made.

192

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

The George Washington University
School of Engineering and Applied Science

Department of Electrical Engineering and Computer Science
CSci 51 - Fall 1997

Project #0
Due Date: 5 PM, Friday, August 29,1997

This initial "mini-project" will not be graded, but you must do it on time. The purpose of is to get
you onto the computer and using the editor and e-mail system to compose a message. You will get
assistance for this during the first lab meetings on Friday. Of course, it is acceptable to do it
earlier.

1. Get your Unix account set up at the School of Engineering and Applied Science
Computing Facility (SEASCF), 4th floor, Tompkins Hall. Do this immediately after
class.

2. Log in to felix. Type the following to get your account set up:

. ~csada/setup-51

This must be typed in exactly as you see it, including the initial dot and the "tilde." If you
have files in your file system from other courses, the setup script will leave those
untouched. The setup process will, however, modify your . kshrc and . profile files to
give you read-only access to the shared directories like programs51 and info. You will
also start receiving a "news flash" from the professor and lab instructor every time you
log in.

3. Once the setup is done, copy the file info/survey, txt into your file system:

cp info/survey.txt ~
4. Bring the survey form into the editor

vi survey.txt
5. Use the editor to fill in the requested information on the survey form, then save the

survey back in your file system.

6. Send the survey as an e-mail message to the prof and lab instructor

elm clund <survey.txt
elm koeun <survey.txt

7. Log off.
We will both acknowledge receipt by sending a "thank you" message back to you. You will then
know that we can communicate with each other.
Please do this project before the deadline.

193

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

W A 4 N I

The George Washington University
School of Engineering and Applied Science

Department of Electrical Engineering and Computer Science
CSci 51 - Fall 1997

Project #1
Due Date: start of class, Thursday, September 11,1997

The purpose of this project is to help you become familiar with the GNAT compilation system
and the editor on f e lix (the Sun/Solaris server in the SEAS Computing Facility).

The first part will help you to become familiar with the compilation system.
Parti:
Compile, link, and execute the programs from Chapter 2. Note that all the programs in the book
are available to you in the programs51 subdirectory. Each program's file name is the same as its
program name, except that the file name is in lower case. (Example: the program Distance,
Program 2.5, is in the file d istance . adb.) Choose one of the last few programs to compile, link,
and execute with tumin running.

You will find that all the programs compile without errors except Program 2.10. Print out and turn
in the listing file from Program 2.10, showing the error messages given by the compiler.
The second part will help you learn to use the software development method as discussed in
Chapter 2.
Part 2:
Problem: You are taking a vacation in the beautiful country of LaLa Land. You rent a car there,
and you're driving on the highway. Then you notice that the distances are measured in furlongs.
Each furlong is 1/8 mile (really!).

Not only that, but speeds are measured in furlongs perfortnight (fpf). Each fortnight is two weeks
or 14 days (really). The highway speed limits are, of course, given in these units.

Worse still, the speedometers on the cars show miles per hour (mph) as is used here in the United
States. So how do you know if you are exceeding the speed limit?

What you need is a quick calculator program, so that if your speedometer reads, for example, 65
mph, you can input this number and the calculator will tell you immediately what your speed is in
fpf, so you can compare it with the speed limit signs.

Your job is to design and code such a program, testing it with some typical highway speeds. For
details on what to turn in, please read the handout Preparation and Grading of Programming
Projects: the Importance o f Professionalism.

194

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

The George Washington University
School of Engineering and Applied Science

Department of Electrical Engineering and Computer Science
CSci 51 - Fall 1997

Project #2
Due Date: start of class, 18 September 1997

The purpose of this project is to help you begin to use standard and class-specific packages.
Everything you need is in Chapters 1-3; you need not, and should not, use any "extra" statements
or anything from later chapters. Part 1 is just a "spider program" for which you need only to turn
in a listing file. No Case Study is needed. Part 2 is a word problem requiring a Case Study.
Part 1:
First compile the Screen and Spider packages:

gcompile screen.ads
gcompile screen.adb
gcompile spider.ads
gcompile spider.adb
Now write and test a program that instructs the spider to draw a pattern in the shape of a triangle,
that is,

X
X x
x x
xxxxxx

Hints: Start the spider facing West, draw the top line, etc. Also note that you can get the spider to
draw a "blank" by changing its color to black.
Part 2:
Here is the specification for a Min_Max package (we'll look at the body in Chapter 4):

PACKAGE Min Max IS
— I specifications of functions provided by Min_Max package
— I Author: Michael B. Feldman, The George Washington University
— I Last Modified: July 1995

FUNCTION Minimum (Valuel, Value2: Integer) RETURN Integer;
— Pre: Valuel and Value2 have been assigned values
— Post: Returns the smaller of the two input values

195

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

FUNCTION Maximum (Valuel, Value2: Integer) RETURN Integer;
— Pre: Valuel and Value2 have been assigned values
— Post; Returns the larger of the two input values

END Min_Max;

First compile the Min_Max package:

gcompile min_max.ads
gcompile min_max.adb
Now develop and test a program that finds the largest, smallest, and average of six integers read
from the terminal.

Hint: Declare variables for the sum, current smallest, and current largest values. You do not need
to store all six values; read them in one at a time, using the Minimum and Maximum functions
from Min_Max to compare each new value to the current smallest and largest.

196

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

The George Washington University
School of Engineering and Applied Science

Department of Electrical Engineering and Computer Science
CSci 51 - Fall 1997

Project #3
Due Date: start of class, 25 September 1997

The purpose of this project is to help you become more familiar with the basics of Ada and
especially the IF statement. You should be reading Chapter 4 by now; everything you need to do
this project will be in chapters 1-4.

Many states have recently raised the speed limits on some of their highways. The state police
would like to collect statistical data on the actual speeds of cars under the new laws, and have
hired us to develop a computer program to help them. In the next few projects, we will design and
build such a program. The first step, Project 3, is to write and test a function to classify a speed
into one of the following classifications:

• Class 1: 0 < speed<= 4 5 miles per hour (m.p.h.)
• Class 2: 45 < speed <= 55
• Class 3: 55 < speed <= 65
• Class 4: 65 < speed <=75
• Class 5: 75 > speed

For this project, declare the function inside a main program, by analogy with Program 4.6. The
main program's declaration part should contain these declarations:

• an enumeration type to define the classes, as follows:
TYPE SpeedClasses IS (Classl, Class2, Class3, Class4, ClassS);

• a subtype to specify the realistic range of speeds on the highway:
SUBTYPE Speeds IS Natural RANGE 0..130;

• the function specification:
FUNCTION Classify (Speed: Speeds) RETURN SpeedClasses;

• the function body

and the main program should test the function according to a test plan you design. For each test,
input a speed from the user, call the function to classify it, and display the classification using an
instantiation of Ada. Text_IO. Enumeration_IO.

As usual, submit the Case Study document, a printout of the listing file, and a test run executed
with tumin.

197

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

The George Washington University
School o f Engineering and Applied Science

Department of Electrical Engineering and Computer Science
CSci 51 - Fall 1997

Project #4
Due Date: start of class, 7 October 1997

The goal of this project is to give you some more experience in working with packages and
enumeration types. The project depends upon material in Chapters 3 and 4.

You are to write a program that prompts the user for a date, then displays the day of the week on
which that date occurs (e.g. September 24, 1992 is on a Thursday).

The month will be entered as a 3-letter enumeration literal (Jan, Feb, etc). The month and the day
of the week should be displayed as above, with the only the first letter in uppercase.

The day will be entered as an integer in the predefined subtype Ada. Calendar. Day Number;
the year will be entered as an integer in the predefined subtype Ada. Calendar. Year Number.

To find the day of the week, use the package DayWeek in the programs directory. The
specification is in dayweek. ads; the body is in dayweek. adb. You will need to compile the
specification, then the body, of this package in order to use it. This package is not in the book, but
it is online in the programs directory. A simple program, DayTest, that demonstrates the package
is in daytest. adb.

Of course Ada. Calendar does not need to be compiled; it is part of the Ada system libraries.

198

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

The George Washington University
School of Engineering and Applied Science

Department of Electrical Engineering and Computer Science
CSci 5 1 - F a l l 1997

Project #5
Due Date: start of class, 16 October 1997

This project depends upon Chapters 1-5, and provides experience with writing loops, and with
file redirection.
Parti:
Write a Spider program Checker_Board, which causes the spider to draw a checkboard pattern
on the screen, like

x x x x
x x x x

x x x x
x x x x

Use loops wherever appropriate.
Part 2:
Revise Project 3 so that a series of 30 speeds is processed as follows.

Instead of reading the speeds from the keyboard, create a file of 30 speeds — call it, say,
speeds. dat — with an editor, one speed per line in the file, and use input redirection to read and
process the 20 speeds. In addition to classifying each speed and displaying its classification, find
the minimum, maximum, and average speeds, and the number of speeds in each class.

If your program is called speeds. exe, using input redirection you can process the speeds by

gexecute speeds.exe <speeds.dat
This program will be much easier to do correctly if you design the algorithm carefully before
starting to code!

As usual, submit the Case Study document, a printout of the listing file, and a test run executed
with tumin.

199

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

The George Washington University
School of Engineering and Applied Science

Department of Electrical Engineering and Computer Science
CSci 5 1 - F a l l 1997

Project #6
Due Date: start of class, 28 October 1997

The purpose of this project is to help you get more familiar with loops and packages, and with
creating and writing output text files.

Your project is to use the DayWeek package to create a disk file called calendar. dat. Your
program will prompt the user for a starting month/year pair and an ending month/year pair, then
write, into the external file, a line for each day in the given range. Enumeration types are to be
used for the month and day abbreviations. For example, if the user enters

APR 1993
MAY 1993
as the starting and ending months, the file will contain, after the program is done, 61 lines. The
first line will say

THU APR 1 1993

and the last line will say

FRI MAY 31 1993
Of course, if the user enters different years for the starting and ending values, the file will be
much larger! Design your algorithm carefully before even thinking about code.
Notes about Files:
To create a file into which your program will write, your program will contain a variable
declaration
MyFile: Ada.Text_IO.File_Type;

To associate the file name with a file in the file system, include this statement after the BEGIN of
your program:

Ada.Text_IO.Create
(File=>MyFile,Mode=>Text_IO.Out_File, Name=>”calendar.dat");

To write an integer value into this file, use the file-oriented Ada. Text_lO operations, for
example, if Today is an integer variable, use

Ada.Integer_Text_IO.Put(File=>MyFile,Itera=>Today,Width=>2);

200

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

The George Washington University
School of Engineering and Applied Science

Department o f Electrical Engineering and Computer Science
CSci 51 ~ Fall 1997

Project #7
Due Date: start of class, 6 November 1997

This project will give you some practice with exceptions and exception loops, and with
modifying packages. Everything you need for this project is in Chapter 6 and earlier chapters. In
this project, you will modify the DayWeek package, and the program DayTest, so that the date
handling is robust ("bulletproof').
Parti:
Modify the body of DayWeek. Use exception handling to check each value as it is entered, to be
sure that the month is in the range Jan.. Dec, the day is in the range of
Ada. Calendar. Day_Number, and the year is in the range Ada. Calendar. Year_Number.
Part 2:
Currently, the function Dayweek. DayOfWeek returns a meaningless value if it receives a bad
combination of inputs (e.g., April 31, or February 29 of a non-leap year). As it happens,
Ada. Calendar provides a built-in way to check the validity of a date. The function
Ada. Calendar. Time_Of has the specification

FUNCTION Time_Of (Year : Year_Number;
Month : Month_Number;
Day : Day_Number;
Seconds : Day_Duration:=0.0) RETURN Time;

and returns a value of type Ada. Calendar. Time, if and only if the month/day/year combination
forms a valid date. Otherwise, Time_Of raises the exception Ada. Calendar. Time_Error.
Let's use this to check the validity of a date. First we define our own exception: change the
specification of DayWeek, to include the line

Date_Error: EXCEPTION;

Next, modify the function DayOfWeek. Declare a variable of type Ada. Calendar. Time, for
example

TestDate: Ada.Calendar.Time;

then call Ada. Calendar. Time_Of with the 3 parameters received by DayOfWeek.

Test.Date :=
Ada.Calendar.Time_Of(Month => Month, Day => Day, Year => Year);

201

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

put an exception handler in the body of DayOfWeek that looks like

EXCEPTION
WHEN Ada.Calendar.Time_Error =>

RAISE Date_Error;

Finally, add to your main program (your modified DayTest) a handler for
DayWeek. Date_Error. Also change the program so that the user is requested to input five valid
dates.

202

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

The George Washington University
School of Engineering and Applied Science

Department of Electrical Engineering and Computer Science
CSci 5 1 - F a l l 1997

Project #8
Due Date: start of class, 13 November 1997

This project involves an extension of the speed-monitoring program you did for Pro jeer 5. It
depends on material from Chapter 7, especially random-number generation as shown in
Random Numbers (Program 7.6) and Drunken Spider (Program 7.7), and the calendar
operations in Time of Day (Program 7.1).

This program will be a simulation of a speed-monitoring session on the Beltway. Instead of
creating a file full of data as in Project 5, consider that on the Beltway, cars pass a given point
at random time intervals, going at more-or-Iess random speeds. With the Beltway speed limit set
at 55, we can assume that almost all speeds lie between, say, 40 and 80. And at most times of the
day, cars pass the monitoring equipment every few seconds.
Parti:
You're going to develop a package that contains the speed types from Project 5, the speed-
classification function, and a new function that will deliver a random speed. If this were a real
speed monitor, this function would be connected to the radar gun instead of the random number
generator. The specification of this package will look like this:

PACKAGE Speeds IS
TYPE SpeedClasses IS (Classl, Class2, Class3, Class4, Class5);
SUBTYPE Speeds IS Natural RANGE 0..130;
FUNCTION Classify (Speed: Speeds) RETURN SpeedClasses;
— Pre: Speed is defined
— Post: Returns the class of the given speed
FUNCTION DeliverSpeed RETURN Speed;
— Pre: None
— Post: Delivers a random speed in the range 40..80

END Speeds;
In the body of this package, put the function bodies as usual. Also, you will need to instantiate
Ada. Numerics. Discrete Random for the range 40..80. This instance, and the generator
variable G, should appear at the top of the package body.

203

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Part 2.
Now develop a main program, based on the one you wrote for Project 5, that simulates the
speed monitor's operation for one hour beginning with the current time. Here you'll need a second
instance of the random number generator, for the subtype

SUBTYPE ArrivalTimes IS Positive RANGE 1..60;

Call this instance RandomArrival, and the generator variable A. If T represents the time of day,
then a new time is calculated by

T := T + Duration(RandomArrival.Random(Gen=>A));

For each new time, get a speed from DeliverSpeed, classify it, and display a line like:

THU NOV 7 1996 12:40:17: Speed 57, Class 3
At the end of about one hour in simulated time, display the speed statistics as you did in
Project 5.

204

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

The George Washington University
School of Engineering and Applied Science

Department of Electrical Engineering and Computer Science
CSci 51 - Fall 1997

Project #9
Due Date: start of class, December 4,1997

Late projects accepted (subject to 20% fee) until 5 PM, December 11,
1997

in Chester Lund’s faculty mailbox.

This project counts double, that is, as two projects
This project involves setting up a database for car records, similar to the one used by the State
Department of Motor Vehicles. Attached is the source code for an interactive user interface
program, Cars 01, and the spec and body of a package Cars. Cars Pi, in operation, looks
something like this:

Select one of the operations below.
C Clear the database
R Read database from disk
W Write database to disk
A Add car to database
D Delete car from database
F Find a car in the database
P Display all records in the database
Q Exit the program
Please type a command, then press Enter > a
Thank you for correct input.

You’ll find it easiest to do the project step-by-step, as follows:

Step 1: Compile these three programs and also the package Simple Dates. Then link Cars UI
and run it, just to see how it behaves.

Step 2: Modify Simple Dates according to the attached package spec. Use ideas and code from
Project 7.

205

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Step 3: Implement the following operations in Cars and tie them into Cars UI:

ReadDatabase
DisplayDatabase

We will provide a test data file cars. dat. You will be able to test these operations by running
Cars CJI, entering an R command, then a P command.

Step 4: Now implement the operations

Put
WriteDatabase
AddCar

so you can read in the data, add a few AddCar transactions, then display and write the database to
disk. You can then examine the disk file with vi or cat.

Step 5: Complete the other operations in the database package and tie them into Cars u i .
Here is the Simple_Dates interface with the desired modifications:

WITH Ada.Calendar;
PACKAGE Simple_Dates IS
— I Specification for package to represent calendar dates
— I in a form convenient for reading and displaying.
— I Author: Michael B. Feldman, The George Washington University
— I Last Modified: April 1996

TYPE Months IS
(Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, Dec) ;

TYPE Date IS PRIVATE;
PROCEDURE Get(Item: OUT Date);
— Pre: None
— Post: Reads a date ROBUSTLY in mmm dd yyyy form, returning it in

Item
PROCEDURE Put(Item: IN Date);
— Pre: Item is defined
— Post: Displays a date in mmm dd yyyy form
PROCEDURE Get(File: IN Ada.Text_IO.File_Type; Item: OUT Date);
— Pre: None
— Post: Reads a date in mmm dd yyyy form from the given file,
— returning it in Item
PROCEDURE Put(File: IN Ada.Text_IO.File_Type; Item: IN Date);
— Pre: Item is defined
— Post: Writes a date in mmm dd yyyy form to the given file
FUNCTION Today RETURN Date;
— Pre: None
— Post: Returns today's date

206

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

PRIVATE

TYPE Date IS RECORD
Month: Months;
Day: Ada.Calendar.Day_Number;
Year: Ada.Calendar.Year_Number;

END RECORD;
END Simple_Dates;

207

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

APPENDIX E. PROJECT ASSIGNMENTS, TREATMENT GROUPS

The project assignments for the control group and the treatment groups were

prepared as Web pages. The page format for this dissertation is different than the original

Web page format of the text. Therefore, the appearance of the text is different when

viewed using a browser. Further, in order to make selected information fit on a single

page (as it did in the project assignment handouts), changes to font size and paragraph

spacing have been made.

208

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

The George Washington University
School of Engineering and Applied Science

Department of Electrical Engineering and Computer Science
CSci 51 ~ Fall 1998

Project #0
Due Date: 5 PM, Friday, 28 August 1998

This initial "mini-project" will not be graded, but you must do it on time. The purpose of is to get
you onto the computer and using the editor and e-mail system to compose a message. You will get
assistance for this during the first lab meetings on Friday. Of course, it is acceptable to do it
earlier.

1. Get your Unix account set up at the School of Engineering and Applied Science
Computing Facility (SEASCF), 4th floor, Tompkins Hall. Do this immediately after
class.

2. Log in to felix. Type the following to get your account set up:

. ~csada/setup-51

This must be typed in exactly as you see it, including the initial dot and the "tilde." If you
have files in your file system from other courses, the setup script will leave those
untouched. The setup process will, however, modify your . kshrc and . profile files to
give you read-only access to the shared directories like programs51 and info. You will
also start receiving a "news flash" from the professor and lab instructor every time you
log in.

3. Once the setup is done, copy the file info/survey, txt into your file system:

cp info/survey.txt ~
4. Bring the survey form into the editor:

vi survey.txt
5. Use the editor to fill in the requested information on the survey form, then save the

survey back in your file system.

6. Send the survey as an e-mail message to the prof and lab instructor:

elm clund <survey.txt
elm koeun <survey.txt

7. Log off.
We will both acknowledge receipt by sending a "thank you" message back to you. You will then
know that we can communicate with each other.
Please do this project before the deadline. Remember, this project must be successfully completed
before any other homework assignment can be done.

209

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

The George Washington University
School of Engineering and Applied Science

Department of Electrical Engineering and Computer Science
CSci 51 - Fall 1998

Project #1
Due Date: start of class, Thursday, 10 September 1998

The purpose of this project is to help you become familiar with the GNAT compilation system
and the editor on f e lix (the Sun/Solaris server in the SEAS Computing Facility).
The first part will help you to become familiar with the compilation system.
Part 1:
Compile, link, and execute the programs from Chapter 2. Note that all the programs in the book
are available to you in the programs51 subdirectory. Each program's file name is the same as its
program name, except that the file name is in lower case. (Example: the program Distance,
Program 2.5, is in the file distance. adb.) Choose one of the last few programs to compile, link,
and execute with "turnin'1 running.

You will find that all the programs compile without errors except Program 2.10. Print out and turn
in the listing file from Program 2.10, showing the error messages given by the compiler. Second,
correct the compilation errors in Program 2.10; then, print out and turn in the corrected listing
file from Program 2.10.

The second part will help you learn to use the software development method as discussed in
Chapter 2.
Part 2:
Problem: You are taking a vacation in the beautiful country of LaLa Land. You rent a car there,
and you're driving on the highway. Then you notice that the distances are measured in furlongs.
Each furlong is 1/8 mile (really!).

Not only that, but speeds are measured in furlongs perfortnight (fpf). Each fortnight is two weeks
or 14 days (really). The highway speed limits are, of course, given in these units.
Worse still, the speedometers on the cars show miles per hour (mph) as is used here in the United
States. So how do you know if you are exceeding the speed limit?

What you need is a quick calculator program, so that if your speedometer reads, for example, 65
mph, you can input this number and the calculator will tell you immediately what your speed is in
fpf, so you can compare it with the speed limit signs.

Your job is to design and code such a program, testing it with some typical highway speeds. For
details on what to turn in, please read the handout Preparation and Grading of Programming
Projects: the Importance o f Professionalism.

210

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

The George Washington University
School of Engineering and Applied Science

Department of Electrical Engineering and Computer Science
CSci 51 - Fall 1998

Project #2
Due Date: start of class, Thursday, 17 September 1998

The purpose of this project is to help you begin to use standard and class-specific packages.
Everything you need is in Chapters 1-3; you need not, and should not, use any "extra" statements
or anything from later chapters. Part 1 is just a "spider program" for which you need only to turn
in a listing file. No Case Study is needed. Part 2 is a word problem requiring a Case Study.
Part 1:
First compile the Screen and Spider packages:

gcompile screen.ads
gcompile screen.adb
gcompile spider.ads
gcompile spider.adb
Now write and test a program that instructs the spider to draw a pattern in the shape of a rhombus,
that is,

xxxxxxxxx
x x

x x
x x

xxxxxxxxx

Hints: Start the spider facing West, draw the top line, etc. Also note that you can get the spider to
draw a "blank" by changing its color to black. No case study is needed for Part I.
Part 2:
Here is the specification for a Min_Max package (we'll look at the body in Chapter 4):

PACKAGE Min Max IS
— I specifications of functions provided by Min_Max package
— I Author: Michael B. Feldman, The George Washington University
— I Last Modified: July 1995

FUNCTION Minimum (Valuel, Value2: Integer) RETURN Integer;
— Pre: Valuel and Value2 have been assigned values
— Post: Returns the smaller of the two input values

211

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

FUNCTION Maximum (Valuel, Value2: Integer) RETURN Integer;
— Pre: Valuel and Value2 have been assigned values
— Post: Returns the larger of the two input values

END Min_Max;

First compile the Min_Max package:

gcompile min_max.ads
gcompile min_max.adb

Now develop and test a program that finds the largest, smallest, and average of seven integers
read from the terminal. Remember, a case study is necessary for Part 2.

Hint: Declare variables for the sum, current smallest, and current largest values. You do not need
to store all six values; read them in one at a time, using the Minimum and Maximum functions
from Min_Max to compare each new value to the current smallest and largest.

212

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

The George Washington University
School of Engineering and Applied Science

Department of Electrical Engineering and Computer Science
CSci 51 ~ Fall 1998

Project #3
Due Date: start of class, Thursday, 24 September 1998

The purpose of this project is to help you become more familiar with the basics of Ada and
especially the IF statement. You should be reading Chapter 4 by now; everything you need to do
this project will be in chapters 1-4.

Many states have recently raised the speed limits on some of their highways. The state police
would like to collect statistical data on the actual speeds of cars under the new laws, and have
hired us to develop a computer program to help them. In the next few projects, we will design and
build such a program. The first step, Project 3, is to write and test a function to classify a speed
into one of the following classifications:

• Class 1: 00 < sp e e d <= 25 miles per hour (m.p.h.)
• Class 2: 25 < sp e e d <= 35
• Class 3: 35 < sp e ed <= 50
• Class 4: 50 < s p e e d <= 65
• Class 5: 65 < s p e e d <= 80
• Class 6: 80 > s p e e d

For this project, declare the function inside a main program, by analogy with Program 4.6. The
main program's declaration part should contain these declarations:

• an enumeration type to define the classes, as follows:
TYPE SpeedClasses IS (Classl, Class2, Class3, Class4, Class5,
Class6);

• a subtype to specify the realistic range of speeds on the highway:
SUBTYPE Speeds IS Natural RANGE 0..120;

• the function specification:
FUNCTION Classify (Speed: Speeds) RETURN SpeedClasses;

• the function body

and the main program should test the function according to a test plan you design. For each test,
input a speed from the user, call the function to classify it, and display the classification using an
instantiation of Ada. Text_IO. Enumeration_IO.

As usual, submit the Case Study document, a printout of the listing file, and a test run executed
with tumin.

213

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

The George Washington University
School o f Engineering and Applied Science

Department o f Electrical Engineering and Computer Science
CSci 51 - Fall 1998

Project #4
Due Date: start of class, Thursday, 1 October 1998

The goal of this project is to give you some more experience in working with packages and
enumeration types. The project depends upon material in Chapters 3 and 4.

You are to write a program that prompts the user for a date, then displays the day of the week on
which that date occurs (e.g. Thursday is on 24 September 1992.).

The month will be entered as a 3-letter enumeration literal (Jan, Feb, etc). The month and the day
of the week should be displayed as above, with the only the first letter in uppercase. This means
that enumeration types are not to be used for output.

The day will be entered as an integer in the predefined subtype Ada. Calendar. Day Number;
the year will be entered as an integer in the predefined subtype Ada. Calendar. Year Number.

To find the day of the week, use the package DavWeek in the programs directory. The
specification is in dayweek.ads; the body is in dayweek.adb. You will need to compile the
specification, then the body, of this package in order to use it. This package is not in the book, but
it is online in the programs directory. A simple program, DayTest, that demonstrates the package
is in daytest. adb.

Of course Ada. Calendar does not need to be compiled; it is part of the Ada system libraries.

As usual, submit the Case Study document, a printout of the listing file, and a test run executed
with tumin.

214

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

The George Washington University
School of Engineering and Applied Science

Department of Electrical Engineering and Computer Science
CSci 51 - Fall 1998

Project #5
Due Date: start of class, Tuesday, 13 October 1998

This project depends upon Chapters 1-5, and provides experience with writing loops, and with
file redirection.
Part 1:
Write a Spider program Checker_Board, which causes the spider to draw a checkboard pattern
on the screen, like

#
*

#
#

Use loops wherever appropriate. No case study is necessary for Part 1. Once the program is
working correctly, make the output of the program a comment in the program and rerun again.
Part 2:
Revise Project 3 so that a series o f 25 speeds is processed as follows.

Instead of reading the speeds from the keyboard, create a file of 25 speeds — call it, say,
speeds.dat — with an editor, one speed per line in the file, and use input redirection to read and
process the 25 speeds. In addition to classifying each speed and displaying its classification, find
the minimum, maximum, and average speeds, and the number of speeds in each class.

If your program is called speeds.exe, using input redirection you can process the speeds by

gexecute speeds.exe <input_speeds.dat
This program will be much easier to do correctly if you design the algorithm carefully before
starting to codel Remember, that a speed of zero is not in any of these classes. Program output
should be formatted as follows:

SPEEDS STATITSTICS PROGRAM, NAMED speeds
Class Name Average Maximum Minimum Number of Speeds
CLASS1 999 999 999 999
CLASS6 999 999 999 999
As usual, submit the Case Study document, a printout of the listing file, and a test run executed
with tumin.

215

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

The George Washington University
School of Engineering and Applied Science

Department of Electrical Engineering and Computer Science
CSci 51 - Fall 1998

Project #6
Due Date: start of class, Tuesday, 27 October 1998

The purpose of this project is to help you get more familiar with loops and packages, and to
introduce PROCEDURES and TASKs.
Part One: Using A PROCEDURE
In Part One you use the Day Week package to create a disk file called calendar. dat. Your
program will prompt the user for a starting month/year pair and an ending month/year pair, then
display a line for each day in the given range. Enumeration types are to be used for the month and
day abbreviations. For example, if the user enters

MAR 1997
APR 1997
as the starting and ending months, the file will contain, after the program is done, 61 lines. The
first line will say

SAT MAR 1 1997

and the last line will say

WED APR 30 1997
Of course, if the user enters different years for the starting and ending values, the file will be
much larger! Design your algorithm carefully before even thinking about code.

Your program should use a PROCEDURE named proc_display_month. This PROCEDURE will
display all the days of a single month. See the specification below:

PROCEDURE proc_display_month (the_year : IN Natural; the_month : IN
Natural; the_days : IN Natural);
To obtain a file output of your program, use the redirection character ">" and do not use
"gexecute" command. Instead, use the example given below.

proj_06p.exe >calendar.dat

216

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Part Two: Using Two TASKs
Replace the PROCEDURE in Part One with two TASKs running concurrently. Create the TASK
TYPE task_disp!ay_month. Each TASK will display all the days of a single month. See the
specification below:

TASK TYPE task_display_month (the_year : Natural; the_month : Natural;
the_days : Natural);
There is only one TASK BODY definition given in the program. Use a DECLARE block, as
shown below, to declare the two tasks. Also, note that the number of days per month varies from
month to month.

DECLARE — Create one task per month
task_one : task_display_month (the_year = year_current,

the_month = month_current,
the_days = total_days_in_month);

BEGIN
task_one.start;

END;
In Part Two only, start the date range on an odd numbered month (e.g., Jan, Mar, etc), and end the
date range with an even numbered month (e.g., Oct, Dec, etc.). Use redirection to obtain a file
output of your program.

Do not do a case study for Part Two. Do a case study for Part One only.

217

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

The George Washington University
School o f Engineering and Applied Science

Department of Electrical Engineering and Computer Science
CSci 51 - Fall 1998

Project #7
Due Date: start of class, Thursday, 5 November 1998

The purpose of this project is to help you get more familiar with FUNCTIONS, PROCEDURES,
and TASKs and to introduce arrays.

You are going to create a PACKAGE named "Stats". This package provides the following:

TYPE sort_array IS ARRAY (1..100) of Float;
PROCEDURE sort (in_array : IN sort_array;

out_array : OUT sort_array;
in_count : IN Natural);

FUNCTION average (in_array : IN sort_array;
in_count : IN Natural) RETURN Float;

FUNCTION median (in_array : IN sort_array;
in_count : IN Natural) RETURN Float;

FUNCTION max (in_array : IN sort_array;
in_count : IN Natural) RETURN Float;

FUNCTION min (in_array : IN sort_array;
in_count : IN Natural) RETURN Float;

The package specification stats. ads is already written. In addition, part of the package body
stats. adb is already written. Also, stored with the package is ALL the test data for this project.
The files are stored in the directory named -csada/clund/pro j_07. To copy the files to your
current directory use the following Unix command: cp ~csada/clund/proj_07/*. * .

You will use this package to analyze student test scores. These test scores have values in the
range from 0.0 to 100.0. In addition, there are some comments and junk in the input data. Your
program will use exception handling to bypass the non-numeric data. Finally, your program will
read its input from the file scores.dat. There are three sets of test data in the file scores.dat; your
program must process all three sets of data.
Part One: Simple Program
In Part One you will complete writing the package named stats, and write a program that reads
and processes the student grade data. Remember to follow the program organization given in
class; this program minimizes the differences between Part One and Part Two. The format of the
program report should be the following:

218

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Comments detected in input data, comment ignored
Score detected out of range, value ignored
Set Number 1

Students = 999
Average = 999.9
Median = 999.9
Minimum = 999.9
Maximum = 999.9

Part Two: Using TASKs
Revise the program created in Part One such that reading the input file and writing the report are
done concurrently (by separate tasks). A simple hint for doing this is included in the file
proj_samp.adb.

Do not do a case study for Part Two. Do a case study for Part One only.
Notes about Files:
To open an input file from which your program will read, your program will contain a variable
declaration:

scores : Ada.Text_IO.File_Type;
To associate the file name with an input file in the file system, include this statement after the
BEGIN of your program:

Ada.Text_IO.open (File => scores, — Open input file
Mode => Ada.Text_IO.in_file,
Name => ''scores.dat");

To read a float value from this file, use the file-oriented Ada.Text_IO operations, for example, if
student_grade is a float variable, use

Ada.Float_Text_IO.get (File = scores, Item = student_graae);

Remember to include into your exception handler the following statement:

Ada.Text_IO.skip_line (File = scores);

219

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

The George Washington University
School of Engineering and Applied Science

Department of Electrical Engineering and Computer Science
CSci 51 - Fall 1998

Project #8
Due Date: start of class, Thursday, 12 November 1998

This project involves five students over a weekend; they are either eating or sleeping. That is it.
The five students are sitting at a large round table in the student union building. They eat at the
table and they sleep at the table (these student are not in condition to leave the table after eating).
This project simulates their behaviour over the weekend. The weekend is 48 hours long. Use one
second on the computer to represent one hour of weekend time. The simulation rules are as
follows:

o There are five students — one task per student
o There are five chopsticks
o There is only one chopstick between each student
o A student must "pick_up" two chopsticks to eat

(only the chopsticks next to the student)
o A student must "put_down" two chopsticks after eating
o Only one student can have a chopstick at a time
o There is an huge supply of food in the center of the table

(enough for the entire weekend)
o Students eat for periods of 1, 2, or 3 hours at a time

(consecutively)
o Students sleep for periods of 1, 2, 3, or 4 hours at a time

(consecutively)
o At no time can all five students hold just one chopstick

and be waiting for a second chopstick (deadlock)
o Students must be allowed to complete their eating and

sleeping cycle even after the 48 hour period is over
(they had a terrible prior week)

o All task communication is by message passing only
o Tasks are given their name and number after they are running

This project uses the DELAY statement in Ada. The DELAY statement uses variables of
SUBTYPE Duration as input. The output of the program is in the following format:

220

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Student Version of Dining Philosophers
This program uses five diner tasks.
<Place other descriptive information here>

Diner 1 - Nikki is eating.
Diner 1 - Nikki finished eating.
Diner 1 - Nikki is sleeping.
Diner 1 - Nikki is finished sleeping.

Passing quit to diner tasks
Diner 1 - Nikki is finished sleeping.
Diner 1 - Nikki TASK is terminating

All tasks have quit. Program completed.

221

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

The George Washington University
School of Engineering and Applied Science

Department o f Electrical Engineering and Computer Science
CSci 51 - Fall 1998

Project #9
Due Date: start of class, Thursday, 3 December 1998

Late projects accepted (subject to 20% fee) until 4 PM, 10 December
1998

in Chester Lund's faculty mailbox.

This project counts double, that is, as two projects
This for car project involves setting up a database records, similar to the one used by the State
Department of Motor Vehicles. Attached is the source code for an interactive user interface
program, proj 09ui, and the spec and body of a package cars.

pro-j 09ui, in operation, looks something like this:

Select one operation below:
C - Table, Commit Table
R - Table, Rollback Table
S - Table, Select all Rows
T - Table, Truncate Table
A - Row, Add One Row
D - Row, Delete One Row
F - Row, Find a Row
□ - Row, Update One Row
Q - Quit the Program
Please type a command, then press Enter > C
Thank you for correct input.

You'll find it easiest to do the project step-by-step, as follows:

Step 1: Compile these three programs and also the package simple dates. Then link
proj 09ui and run it, just to see how it behaves.

Step 2: Modify simple dates according to the attached package spec. Use the concepts
developed in Project 7.

Step 3: Implement the following task in proj 09ui:

database_writer

222

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

The database_writer task reads from input file into the DB_Commit array and the DB_Pending
array. The database_writer writes only from the DB_Commit array (every so many seconds, you
chose the time interval). We will provide a test data file c a rs . dat . You will be able to test
these operations by running proj 09ui program.

Step 4: Now implement the operations

Coiranit_Database — Copy DB_Pending to DB_Commit
Rollback_Database — Copy DB_Commit to DB_Pending
Select_Database — Display all rows in DB_Pending

The database_writer task and the Commit_Database procedure require synchronization — use the
task synchronize_commit for this purpose.

Step 5: Now implement the operations

Put
Add_Row
Find_Row

so you can read in the data, add a few Add_Row transactions, then display and write the database
to disk. You can then examine the disk file with vi or cat. Hint: Rewrite the Procedure
Select_Database to use the Procedure Put.

Step 6: Complete the other operations in the database package and tie them into proj 09ui.
The Ada source code files necessary to start this project are stored in the directory
"~csada/clund/proj_09". Use the Unix copy ("cp") command to obtain the files.

Here is the simple_Dates interface with the desired modifications:

WITH Ada.Calendar;
PACKAGE Simple_Dates IS
— I Specification for package to represent calendar dates
— I in a form convenient for reading and displaying.
— I Author: Michael B. Feldman, The George Washington University
— I Last Modified: April 1996

TYPE Months IS
(Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, Dec);

TYPE Date IS PRIVATE;
PROCEDURE Get(Item: OUT Date);
— Pre: None
— Post: Reads a date ROBUSTLY in nunm dd yyyy form, returning it in

Item
PROCEDURE Put(Item: IN Date);
— Pre: Item is defined
— Post: Displays a date in mmm dd yyyy form

223

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

PROCEDURE Get(File: IN Ada.Text_IO.File_Type; Item: OUT Date)
— Pre: None
— Post: Reads a date in mmm dd yyyy form from the given file
— returning it in Item
PROCEDURE Put(File: IN Ada.Text_IO.File_Type; Item: IN Date);
— Pre: Item is defined
— Post: Writes a date in mmm dd yyyy form to the given file
FUNCTION Today RETURN Date;
— Pre: None
— Post: Returns today's date

PRIVATE
TYPE Date IS RECORD

Month: Months;
Day: Ada.Calendar.Day_Number;
Year: Ada.Calendar.Year_Number;

END RECORD;
END Simple_Dates;

224

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

APPENDIX F. MID-TERM EXAMINATION

The mid-term examination was given in two parts:

• Part One - examination in classroom, 75 minutes, open book, six problems

• Part Two — examination in lab room, 45 minutes, open book using computer

The part one exam is included in the experiment. The part one examination for all three

groups is included in the next 18 pages; these pages include the questions, answers, and

grading instructions. The point structure for the part one exam is given below:

• Problem 1 - 20 points

• Problem 2 — 10 points

• Problem 3 — 15 points

• Problem 4 —10 points

• Problem 5 — 12 points

• Problem 6 —12 points

A sample part two exam problem is presented in the last two pages of this appendix;

these two pages include the question, grading instructions, and sample program. This

sample part two exam was given to the Fall 1997 group. As previously stated in this

document, the part two exam is NOT included in the experiment.

The exams for the control group and the treatment groups were prepared as plain

text files. The page format for this dissertation is different than the plain text file format.

Therefore, the appearance of the exam text in this document is different. Further,

changes to font size and paragraph spacing have been made (when needed).

225

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Mid-Term Examination, Control Group, Fall 1997

PROBLEM 1 (20 total points, 2 points each)
Given these declarations: Grading Notes (l-> 8):

int : Integer; I point computation
nat : Natural; 1 point format
flo : Float; either side of float, counts as correct

Show what will be displayed by each of these program fragments.
If a fragment will lead to an error, briefly explain the cause
of the error. Use the letter "b" for a blank space.

Answers .*
Part 1

int : = 2 * 3 + 4 * 5 ; bbb26
Ada.Integer_Text_IO.put (Item => int, Width => 5);
— Part 2
int : = 2 + 3 / 4 * 5 ;
Ada. Integer_Text_IO.put (Item => int, Width =»> 5);

bbbb2

— Part 3
int : = 2 * * 3 * 4 + 5 ;
Ada.Integer_Text_IO.put (Item => int, Width => 5);

bbb37

— Part 4
nat : = 6 + 7 * 8 - 9 ;
Ada.Integer_Text_IO.put (Item => nat, Width => 1);

53

— Part 5
nat : = 6 * 7 - 8 * 9 ; constraint error
Ada.Integer_Text_IO.put (Item => nat, Width => 1);

Part 6
nat : = 6 * 7 / 8 / 9 ; 0
Ada.Integer_Text_IO.put (Item => nat, Width => 1);
— Part 7
flo := 2.5 * 6.0 I 12.0; bbbbl.25
Ada.Float_Text_IO.put (Item=>flo, Fore=>5, Aft=>2, Exp=>0);

Part 8
flo := 6.0 * 7.0 - 8.0 * 9.0; bb-30.00
Ada.Float Text 10.put (Item=>flo,Fore=>5, Aft=>2, Exp=>0);
— Part 9
IF 6 + 7 * 8 - 9 >= 2 + 3 / 4 * 5 THEN

Ada.Text_IO.put (Item => "TRUE");
ELSE

Ada.Text_I0.put (Item => "FALSE");
END IF;

TRUE(+2)

— Part 10
I F 1 8 + 4 / = 2 * 3 + 4 * 5 THEN

Ada.Text_IO.put (Item => "TRUE");
ELSE

Ada.Text_IO.put (Item => "FALSE");
END IF;

TRUE(+2)

226

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Mid-Term Examination, Control Group, Fall 1997

PROBLEM 2 (10 points total)
Part 1 (4 points)
Explain, in your own words, what a data type is.
Do NOT copy your answer from the book.

Grading : (see pages 67 in Feldman text)
key words to use: "a set of values (2 points) and

a set of operations (2 points)"
if one or more of the above missing, then partial credit words:

predefined type (1) if others missing
can define own (1) if others missing

Part 2 (6 point total, 1 point each type)
Name six data types of variables. Given a sample declaration for each
type with a value assigned using a literal.

One set possible answers:
c : character := 'a'; Grading : one point per type
f : float := 1.2;
i : integer := -12;
n : natural := 12; — Actually integer subtype

— Accepted here
s : string (1..5) := "hello";
TYPE my_enum IS (aaa, bbb, ccc); — This is an enumeration type,
e : my_enum := aaa;

227

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Mid-Term Examination, Control Group, Fall 1997

PROBLEM 3 (15 points total)
The eight dwarfs are sneezy, dopey, bashful, grumpy, doc, sleepy,
happy, and cheapy. Write a small program named "dwarfs":

o The program displays the names of all eight drawfs.
One dwarf per line,

o The program displays the number of dwarfs (use an attribute).
Your program must use a FOR LOOP and demonstrate three enumeration
type attributes. The following statements are assumed:

WITH Ada.Text_IO;
WITH Ada.Integer_Text_IO;

The instructor's program is 14 lines including the WITH statements.

One possible answer is:
WITH Ada.Text_IO;
WITH Ada.Integer_Text_IO;
PROCEDURE dwarfs IS

TYPE dwarf IS (sneezy, dopey, bashful, grumpy, doc,
sleepy, happy, cheapy);

PACKAGE dwarf_IO IS NEW Ada.Text_IO.Enumeration_IO (enum => dwarf);
BEGIN

FOR d IN dwarf'first..dwarf'last LOOP
dwarf_IO.put (Item => d);
Ada.Text_IO.new_line;

END LOOP;
Ada.Text_IO.put (Item => "The number of dwarfs is ");
Ada.Integer_Text_IO.put (Item => dwarf'Pos(cheapy) + 1);

END dwarfs;
Scoring: PROCEDURE statement +1

BEGIN +1
END statement +1
TYPE statement +1
PACKAGE dwarf_IO +1
FOR LOOP +3
Dwarf Count Display +1
ENUM Attributes +6 (2 points per attribute used correctly)

228

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Mid-Term Examination, Control Group, Fall 1997

PROBLEM 4 (10 points total)
Nancy has 2 dogs and 3 cats. The dogs and cats are identified by two
variables named "animal" and "number". Using the logic table below,
write the IF statements that display the text given below.

animal number text to be displayed
1 1 dog named Puddles
1 2 dog named Jake
2 1 cat named Midnight
2 2 cat named Tom
2 3 cat named Cleo

The instructor's IF statements are approximately 15 lines long.

One possible answer is:
IF animal = 1 THEN

IF number = 1 THEN
Ada.Text_IO.put ("dog named Puddles");

ELSE
Ada.Text_I0.put ("dog named Jake1');

END IF;
ELSE

IF number = 1 THEN
Ada.Text_I0.put ("cat named Midnight");

ELSIF number = 2 THEN
Ada.Text_I0.put ("cat named Tom");

ELSE
Ada.TEXT_I0.put ("cat named Cleo");

END IF;
END IF;
trading : First level IF THEN ELSE +3

Second level IF THEN ELSE +3 (or use AND)
Use END IF +2
Logic / Good syntax +2 (RESERVE words,punctuation)

229

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Mid-Term Examination, Control Group, Fall 1997

PROBLEM 5 (12 total points, 4 points per FUNCTION)
Write three functions named "pi_it". The input parameter name is "x".

Input Output type FUNCTION output

Character Integer -1
Float Float input * 3.14159
Integer Natural input * 3, output is always positive

The instructor's FUNCTION'S are four lines, four lines, and eight lines
long.

One possible answer is: — Grading Info:

FUNCTION pi_it (x : IN Character) RETURN Integer IS
BEGIN

RETURN -1; — 1 point per line item
END pi_it;
FUNCTION pi_it (x : IN Float) RETURN Float IS
BEGIN

RETURN x * 3.14159; — 1 point per line item
END pi_it;
FUNCTION pi_it (x : IN Integer) RETURN Natural IS
BEGIN

IF x < 0 THEN — 2 points for FUNCTION
RETURN 0 - x * 3; — 2 points for IF

ELSE
RETURN x * 3;

END IF;
END pi_it;

230

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Mid-Term Examination, Control Group, Fall 1997

PROBLEM 6
Part 1 (6 points)
Write a PACKAGE specification named "smalljpackage" that includes
the three FUNCTIONS in problem 5.

PACKAGE small_package IS
FUNCTION pi_it (x : IN Character) RETURN Integer;
FUNCTION pi_it (x : IN Float) RETURN Float;
FUNCTION pi_it (x : IN Integer) RETURN Natural;

END smalljpackage;

Grading : one point per line, one point for same name.

Part 2 (3 points)
What is polymorphic about the PACKAGE? One sentence answer, please.

FUNCTIONS have the same name (pi_it is overloaded). (from class)
Grading : FUNCTIONS have same name +3

Part 3 (3 points)
What is encapsulated in the PACKAGE? One sentence answer, please.

Three FUNCTIONS are all in the same PACKAGE. (from class)
Grading : stuff in PACKAGE +3

231

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Mid-Term Examination, Treatment Group One, Spring 1998

PROBLEM 1 (20 total points, 2 points each)
Given these declarations: Grading Notes (l-> 8):

int : Integer; 1 point computation
nat : Natural; 1 point format
flo : Float; either side of float, counts as correct

Show what will be displayed by each of these program fragments.
If a fragment will lead to an error, briefly explain the cause
of the error. CJse the letter "b" for a blank space.

— Part 1 Answers:
int : = 6 * 7 + 8 * 9 ; bbbll4
Ada.Integer_Text_IO.put (Item => int, Width => 6);
— Part 2
int : = 6 + 7 / 8 * 9 ;
Ada.Integer_Text_IO.put (Item => int, Width => 6);

bbbbb6

— Part 3
nat := 3 ** 2 * 8 + 9;
Ada.Integer_Text_IO.put (Item => nat, Width => 6);

bbbb81

— Part 4
int :=8 - 9 * 6 - 7 ;
Ada.Integer_Text_IO.put (Item => int, Width => 1);

-53

— Part 5
nat := 9 / 8 / 7 * 6; 0
Ada.Integer_Text_IO.put (Item => nat, Width => 1);

Part 6
nat := 7 / 8 / 9 - 6; constraint error
Ada.Integer_Text_IO.put (Item => nat, Width => 1);

Part 7
flo := 18.0 / 12.0 * 2.5; bbbbb3.75
Ada.Float_Text_IO.put (Item=>flo, Fore=>6, Aft=>2, Exp=>0);

Part 8
flo := 9.0 / 8.0 - 13.0 / 8.0; bbbb-0.50
Ada.Float_Text_IO.put (Item=>flo, Fore=>6, Aft=>2, Exp=>0);
— Part 9
IF 9 / 8 / 7 * 6 >= 6 + 7 / 8 * 9 THEN

Ada.Text_IO.put (Item => "TRUE");
ELSE

Ada.Text_IO.put (Item => "FALSE”);
END IF;

FALSE (+2)

— Part 10
IF 102 /= 6 * 7 + 8 * 9 THEN

Ada.Text_IO.put (Item => "TRUE");
ELSE

Ada.Text_IO.put (Item => "FALSE");
END IF;

TROE (+2)
(see page 132)

232

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Mid-Term Examination, Treatment Group One, Spring 1998

PROBLEM 2 (10 points total)
Part 1 (4 points)
Explain, in your own words, what is the difference between a variable
and a data type.

Grading : (see pages 42 and 67)
key words to use:

data type — "a set of values (1 point) and
a set of operations (1 point)”

variable — "is an identifier,” page 42, and
are "used in a program for storing results",
page 43, which have a value
identifier or identification (1 point)
storing a result or something (1 point)

Partial credit: predefined type (1) if others missing
can define own (1) if others missing

Part 2 (6 point total, 1 point each type)
Name six different data types by giving a sample declaration for each
type, and assign an initial value using a literal (do not use positive
or negative [subtypes])
One set possible answers:

c : character : = ' a '; Grading : one point per type

f : float := 1.2;
i : integer := -12;

n : natural := 12; — Actually integer subtype
— Accepted here

s : string (1. .5) := "hello";
TYPE my_enum IS (aaa, bbb, ccc); — This is an enumeration type,

e : my_enum := aaa;

233

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Mid-Term Examination, Treatment Group One, Spring 1998

PROBLEM 3 (15 points total)
The seven dwarfs are sneezy, dopey, bashful, grumpy, doc, sleepy, and
happy. Write a small program named "dwarfs", using these rules:

o The program displays the names of all drawfs.
o Two dwarfs per line, with two spaces between the names

(except last line).
o The program displays the number of dwarfs (use an attribute).

Your program must use a FOR LOOP, IF statement, and demonstrate three
enumeration type attributes. The following statements are assumed:

WITH Ada.Text_IO;
WITH Ada.Integer_Text_IO;

The instructor's program is 16 lines including the WITH statements.

One possible answer is:
WITH Ada.Text_IO;
WITH Ada.Integer_Text_IO;
PROCEDURE dwarfs IS

TYPE dwarf IS (sneezy, dopey, bashful, grumpy, doc, sleepy, happy);
PACKAGE dwarf_IO IS NEW Ada.Text_IO.Enumeration_IO (enum => dwarf);

BEGIN
FOR d IN dwarf'first..dwarf'last LOOP

dwarf_IO.put (Item => d) ;
Ada.TEXT_IO.put (Item => " ");
If dwarf'pos(d) MOD 2 = 0 THEN

Ada.Text_IO.new_Iine;
END IF;

END LOOP;
Ada.Text_IO.put (Item => "The number of dwarfs is ");
Ada.Integer_Text_IO.put (Item => dwarf'Pos(cheapy) + 1);

END dwarfs;
Scoring: PROCEDURE statement +1

BEGIN +1
END statement +1
TYPE statement +1
PACKAGE dwarf_I0 +1

FOR LOOP +2
IF logic +2
ENUM Attributes +6

234

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Mid-Term Examination, Treatment Group One, Spring 1998

PROBLEM 4 (10 points total)
Nora has seven children. The children are identified by two variables
named "age" and "gender". Using the logic table below, write the IF
statements that display the names of the children.

Name of child age gender
Ralph 12 M
Nancy 10 F
Eric 8 M
Jane 8 F
Art 6 M
Sue 6 F
Oops 1 M

The instructor's IF statements are approximately 19 lines long.

One possible answer is:
IF age = 12 THEN

Ada.Text_IO.put (Item => "Ralph”);
ELSIF age = 10 THEN

Ada.Text_IO.put (Item => "Nancy");
ELSIF age = 8 THEN

IF gender = 'M' THEN
Ada.Text_IO.put (Item => "Eric");

ELSE
Ada.Text_IO.put (Item => "Jane");

END IF;
ELSIF age = 6

IF gender = ’M ’ THEN
Ada.Text_IO.put (Item => "Art");

ELSE
.Ada.Text_IO.put (Item => "Sue");

END IF;
ELSE

Ada.Text_I0.put (Item => "Oops");
END IF;

(or use AND)
(RESERVE words,punctuation)

235

Grading : First level IF THEN ELSE +3
Second level IF THEN ELSE +3
Use END IF +2
Logic / Good syntax +2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Mid-Term Examination, Treatment Group One, Spring 1998

PROBLEM 5 (12 total points, 4 points per FUNCTION)
Write three functions named "george".
The input parameter name is "in_x".

Input Output type FUNCTION output

Character Integer
in_x < 'M' -1
or else 0

Float Float input * input
Integer Natural

in_x < 3 0
or else the three time input minus 3

The instructor's FUNCTION'S are six lines, four lines, and eight lines
long.

One possible answer is: — Grading Info:

FUNCTION george (in_x : IN Character) RETURNS Integer IS
BEGIN

IF in_x < 'M' THEN RETURN -1; — 2 points for FUNCTION
ELSE RETURN 0; — 2 point for IF
END IF;

END george;
FUNCTION george (in_x : IN Float) RETURNS Float IS
BEGIN

RETURN in_x * in_x; — 1 point per line item
END george;
FUNCTION george (in_x : IN Integer) RETURNS Natural IS
BEGIN

IF in_x < 3
RETURN 0; — 2 points for FUNCTION

ELSE — 2 points for IF
RETURN 3 * in_x - 3;

END IF;
END george;

236

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Mid-Term Examination, Treatment Group One, Spring 1998

PROBLEM 6
Part 1 (6 points)
Write a PACKAGE specification named "small_package" that includes
the three FUNCTIONS in problem 5.

PACKAGE small_package IS — (see page 121)
FUNCTION george (x : IN Character) RETURNS Integer;
FUNCTION george (x : IN Float) RETURNS Float;
FUNCTION george (x : IN Integer) RETURNS Natural;

END small_package;
Grading : one point per line, one point for same name.

Part 2 (3 points)
What is polymorphic about the PACKAGE? One sentence answer, please.

FUNCTIONS have the same name (overloaded name). (from class)
Grading : FUNCTIONS have same name +3

Part 3 (3 points)
What is encapsulated in the PACKAGE? One sentence answer, please.

FUNCTIONS are all in the same PACKAGE. (from class)

Grading : stuff in PACKAGE +3

237

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Mid-Term Examination, Treatment Group Two, Fall 1998

PROBLEM 1 {20 total points, 2 points each)
Given these declarations: Grading Notes (l-> 8):

int : Integer; 1 point computation
nat : Natural; 1 point format
flo : Float; either side of float, counts as correct

Show what will be displayed by each of these program fragments.
If a fragment will lead to an error, briefly explain the cause
of the error. CJse the letter "b" for a blank space.

Answers:
— Part 1
int : = 7 * 3 + 3 * 9 ; — bb48
Ada.Integer_Text_IO.put (Item => int, Width => 4);
— Part 2
int : = 7 + 2 / 3 * 9 ;
Ada.Integer_Text_IO.put (Item => int, Width => 4);

bbb7

— Part 3
nat : = 7 * * 2 * 3 + 9 ;
Ada.Integer_Text_IO.put (Item => nat, Width => 4);

bl56

— Part 4
int : = 7 - 2 * 9 + 3 ;
Ada.Integer_Text_IO.put (Item => int, Width => 1);

- 8

Part 5
nat : = 7 / 3 / 2 - 9 ; — constraint error
Ada.Integer_Text_IO.put (Item => nat, Width => 1);

— Part 6
nat := 7 / 3 / 2 * 9; -- 9
Ada.Integer_Text_IO.put (Item => nat, Width => 1);
— Part 7
flo := 39.0 / 6.0 * 1.5; -- bbb9.75
Ada.Float_Text_IO.put (Item=>flo, Fore=>4, Aft=>2, Exp=>0);

Part 8
flo := 9.0 / 3.0 - 7.0 / 2.0; -- bb-0.50
Ada.Float_Text_IO.put (Item=>flo, Fore=> 4, Aft=>2, Exp=>0);
— Part 9
IF 7 * 3 + 3 * 9 >= 7 + 2 / 3 * 9 THEN

Ada.Text_IO.put (Item => "TRUE”);
ELSE

Ada.Text_IO.put (Item => "FALSE");
END IF;

— TRUE (+2)

— Part 10
I F 7 - 2 * 9 + 3 < 2 1 THEN

Ada.Text_IO.put (Item => "TRUE");
ELSE

Ada.Text_IO.put (Item => "FALSE");
END IF;

— TRUE (+2)
(see page 132)

238

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Mid-Term Examination, Treatment Group Two, Fall 1998

PROBLEM 2 (10 points total)
Part 1 (4 points)
Explain, in your own words and the textbooks, what is a variable and a
data type.

Grading : (see pages 42 and 67)

key words to use:
data type — "a set of values (1 point) and

a set of operations (1 point)"
variable — "is an identifier," page 42, and

are "used in a program for storing results",
page 43, which have a value
identifier or identification (1 point)
storing a result or something (1 point)

Partial credit: predefined type (1) if others missing
can define own (1) if others missing

Part 2 (6 point total, 1 point each type)
Name six different data types by giving a sample declaration for each
type, and assign an initial value using a literal (do not use positive
or negative as data types [subtypes]).
One set possible answers:

c : character := 'a'; Grading : one point per type
f : float CMHii

i : integer := -12;
n : natural := 12; — Actually integer subtype

— Accepted here
s : string (1. .5) := "hello";
TYPE my_enum IS (aaa, bbb, ccc); — This is an enumeration type,
e : my_enum := aaa;

239

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Mid-Term Examination, Treatment Group Two, Fall 1998

PROBLEM 3 (15 points total)
The seven dwarfs are sneezy, dopey, bashful, grumpy, doc, sleepy, and
happy. Write a small program named "dwarfs", using these rules:

o Display the names of all drawfs.
o Display one dwarf per line.
o Display the number of dwarfs (use an attribute).
o Display the text "is a bad dwarf" with grumpy.

Your program must use a FOR LOOP, IF statement, and demonstrate three
enumeration type attributes. The following statements are assumed:

WITH Ada.Text_IO;
WITH Ada.Integer_Text_IO;

The instructor's program is about 18 lines including the WITH
statements.

One possible answer is:
WITH Ada.Text_IO;
WITH Ada.Integer_Text_IO;
PROCEDURE dwarfs IS

TYPE dwarf IS (sneezy, dopey, bashful, grumpy, doc, sleepy, happy);
PACKAGE dwarf_IO IS NEW Ada.Text_IO.Enumeration_IO (enum => dwarf);

BEGIN
FOR d IN dwarf'first..dwarf'last LOOP

dwarf_IO.put (Item => d);
IF d = grumpy THEN

Ada.Text_IO.put (Item => " is a bad dwarf");
Ada.Text_IO.new_line;

END IF;
END LOOP;
Ada.Text_IO.put (Item => "The number of dwarfs is ");
Ada.Integer_Text_IO.put (Item => dwarf'Pos(happy) + 1);
Ada.Text_IO.new_line;

END dwarfs;
Scoring: PROCEDURE statement +1

BEGIN +1
END statement +1
TYPE statement +1
PACKAGE dwarf_IO +1

FOR LOOP +2
IF logic +2
ENUM Attributes + 6 (2

240

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Mid-Term Examination, Treatment Group Two, Fall 1998

PROBLEM 4 (10 points total)
Sandy has seven pets. The pets are identified by two variables
named "animal" and "gender". Using the logic table below, write the IF
statements that display the names of the pets.

animal gender name of pet I what the letters mean
d b Rover I b = boy
c g Cleo I c = cat
d g Suzie I d = dog
c b Max | f = fish
f g Wanda I g = girl
f b Sushi I p = pig
p b Bacon I

The instructor's IF statements are about 12 to 20 lines long (depends
upon whether the "put" statement is on the same line as the "THEN")

One possible answer is:
IF gender = 'b' THEN

IF animal = 'd' THEN
ELSIF animal = 'c' THEN
ELSIF animal = 'f* THEN
ELSE
END IF;

ELSE — gender = 'g'
IF animal = 'd' THEN
ELSIF animal = 'c' THEN
ELSE
END IF;

END IF;

Ada.Text_IO.put
Ada.Text_IO.put
Ada.Text_IO.put
Ada.Text 10.put

Ada.Text_IO.put
Ada.Text_IO.put
Ada.Text_IO.put

(Item => "Rover");
(Item => "Max");
(Item => "Sushi");
(Item => "Bacon");

(Item => "Suzie");
(Item => "Cleo");
(Item => "Wanda");

Grading : First level IF THEN ELSE +3
Second level IF THEN ELSE +3 (or use AND)
Use END IF +2
Logic / Good syntax +2 (RESERVE words,punctuation)

241

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Mid-Term Examination, Treatment Group Two, Fall 1998

PROBLEM 5 (12 total points, 4 points per FUNCTION)
Write three functions named "happy".
The input parameter name is "in_x".

Input
Integer

in_x < 0
in_x = 0
in_x > 0

Float
Natural

in_x <199
otherwise

Output type
Integer

Float
Integer

FUNCTION output

-1
0
1

two times input times 3.14159
input minus 200
100

The instructor's FUNCTION'S are 7 to 10 lines, four lines, and eight
lines long.

One possible answer is: — Grading Info:

FUNCTION happy (in_x : IN Integer) RETURNS Integer IS
BEGIN

— 2 points for FUNCTION
2 point for IF

IF in_x < 0 THEN RETURN -1
ELSIF in_x = 0 THEN RETURN 0
ELSE RETURN 1
END IF;

END happy;
FUNCTION happy (in_x : IN Float) RETURNS Float IS
BEGIN

RETURN 2.0 * in_x * 3.14159; — 1 point per line item
END happy;
FUNCTION happy (in_x : IN Natural) RETURNS Integer IS
BEGIN

IF inx_x < 199 THEN
RETURN in_x - 200; — 2 points for FUNCTION

ELSE — 2 points for IF
RETURN 100;

END IF;
END happy;

242

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Mid-Term Examination, Treatment Group Two, Fall 1998

PROBLEM 6
Part 1 {6 points)
Write a PACKAGE specification named "small_package" that includes
the three FUNCTIONS in problem 5.

PACKAGE small_package IS — (see page 121)
FUNCTION happy (x : IN Integer) RETURNS Integer;
FUNCTION happy (x : IN Float) RETURNS Float;
FUNCTION happy (x : IN Natural) RETURNS Integer;

END smalljpackage;
Grading ; one point per line, one point for same name.

Part 2 (3 points)
What is polymorphic (or overloaded) about the PACKAGE?
One sentence answer, please.

FUNCTIONS have the same name. (from class)
Grading : FUNCTIONS have same name +3

Part 3 (3 points)
What is encapsulated in the PACKAGE? One sentence answer, please.

FUNCTIONS are all in the same PACKAGE. (from class)
Grading : stuff in PACKAGE +3

243

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Sample Lab Exam Question — Material Not Included In The Experiment

PROBLEM 7
Grading of this problem: Case study 6 points

Test plan 4 points
Correctness 10 points
Style 4 points

Write a program named "iso_tri". This program produces a triangle of
"x" like the triangle shown below (with each line number identified):

X Line number is ONE
XX Line number is TWO
xxx Line number is THREE
xxxx Line number is FOUR
xxxxx Line number is FIVE
xxxxxx Line number is SIX

Your input is to be text that represents a number. The input prompt in
the instructor's version of the program is as follows:

Enter a number from one to twelve;
using the name of the number (two). >

Your output should line up in columns as shown below:
x Line number is ONE
xx Line number is TWO
xxx Line number is THREE
xxxx Line number is FOUR

The rules below must be followed to get maximum credit for this
problem.

o No IF statements
o No FUNCTIONS and PROCEDURES
o NO PACKAGES
o FOR LOOPs and Enumeration Types are to be used
o Run only two good input "gexecute" of the program
o Document only bad input test data

The instructor's program is 22 lines long without comments.
Place your documentation in a separate file. The following
documentation should be included in the program:

o Analysis — keep it short (Maximum of ten lines)
o Data requirements and formulas — keep it short
o Design — initial algorithm and any refinements
o Test plan

Remember to include your documentation in your "turnin'' script. Given
that the name of documentation file is "mid_term.doc”, use the Unix
"cat" command to include the documentation in the tumin script:
cat mid term.doc

244

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

The preferred way to hand in PROBLEM 7 is to E-mail your "turnin"
script to the instructor. Given that the name of your script is
"mid_term.turnin''; E-mail your script as follows:
cat mid term.turnin I elm -s mid term clund

Grading detail:
Case study 6 points

Analysis 1 point
Program Inputs 1 point
Program Outputs 1 point
Types/ subtypes / intermediate variables 1 point
Algorithm & Refinement 2 point

Test plan 4 points
Good data 2 point
Boundary conditions 1 point
Data Error or Constraint Error 1 point

Correctness 10 points
Input logic correct 2 point
Triangle logic detected 2 point
Other output logic correct 2 point
Compile and link 2 point
Go! 2 point

Style 4 points
Indentation / Other 2 point
Gift (for trying to write code)!! 2 point

One possible solution is:

WITH Ada.Text_IO;
PROCEDURE iso_tri IS

TYPE number IS (one, two, three, four, five, six,
seven, eight, nine, ten, eleven, twelve);

PACKAGE number_IO IS NEW Ada.Text_I0.Enumeration_IO
(Enum => number);

num_name : number;
BEGIN

Ada.Text_I0.put (Item => "Enter a number from one to twelve; ");
Ada.Text_I0.put (Item => "using the name of the number (two). >");
number_I0.get (Item => num_name);
FOR i IN 1..number'pos(num_name)+1 LOOP

FOR j IN 1..i LOOP
Ada.Text_IO.put (ITEM => 'x ') ;

END LOOP;
FOR j IN i..number'pos(num_name)+1 LOOP

Ada.Text_IO.put (Item => ' ');
END LOOP;
Ada.Text_IO.put (Item => "Line number is ");
number_I0.put (Item => number'val(i-1));
Ada.Text_IO.new_line;

END LOOP;
END iso tri;

245

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

APPENDIX G. FINAL EXAMINATION

The final examination is an open book, 120 minute test given in the classroom.

The point structure for the common six sequential test questions is given below:

• Problem 1 — 7 points

• Problem 3 — 10 points

• Problem 5 — 8 points

• Problem 9 — 10 points

• Problem 10 — 10 points

• Problem 11 — 12 points

The total number of points for the above problems is 57. Two points in Problem 3 are

not included in the comparison. The next 24 pages of this appendix are the six sequential

final exam test questions; these pages include questions, answers, and grading

instructions.

The four concurrency final exam test questions follow the sequential questions.

The same concurrency questions were asked of both treatment groups. The point

structure for the four concurrency test questions is given below.

• Problem 2 - 1 0 points

• Problem 4 - 1 2 points

• Problem 7 - 1 0 points

• Problem 8 — 9 points

The concurrency test question pages include the questions, answers, and grading

instructions.

The final two pages of this appendix present a sample Problem 6 that is not part of

the experiment.

The exams for the control group and the treatment groups were prepared as plain

text files. The page format for this dissertation is different than the plain text file format.

Therefore, the appearance of the exam text in this document is different Further,

changes to font size and paragraph spacing have been made (when needed).

246

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Final Examination Sequential Problem, Control Group, Fall 1997

Problem 1. (7 points total)
What is the output of the program given below:

WITH Ada.Text_IO; USE Ada.Text_IO;
WITH Ada.Integer_Text_IO;
PROCEDURE prob_01 IS

a : Natural := 1;
b : Natural := 0;
t : Natural;

BEGIN
put ("Program prob_01 — Print Number Sequence");
new_line (Spacing => 2);
put (" Integer New Number”); new_line;
put (" ---- -------------"); new_line;
FOR c IN 2..11 LOOP

t := a; a := a + b; b := t;
Ada.Integer_Text_IO.put (Item => c, Width => 9)
Ada.Integer_Text_IO.put (Item => a, Width => 14)
new_line;

END LOOP;
END prob_01;
Answer:

Program prob_01 — Print Number Sequence
Integer New Number

2 1
3 2
4 3
5 5
6 8
7 13
8 21
9 34

10 55
11 89

Grading: "Program" line 1 point
Column headers 1 point
Integer column indent 1 point
Integer column values 1 point
New Number column indent 1 point
New Number column values 2 points

247

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Final Examination Sequential Problem, Control Group, Fall 1997

Problem 3. (10 points total)
The PACKAGE BODY timer is defined below. There are five items to be
answered.

PACKAGE BODY timer IS
FUNCTION total_seconds (days, hours, minutes,

seconds: IN Natural)
RETURNS Natural IS

BEGIN
RETURN days * 24 * 60 * 60 +

hours * 60 * 60 +
minutes * 60 +
seconds;

END total_seconds;
FUNCTION total_minutes (days, hours, minutes: IN Natural)

RETURNS Natural IS
BEGIN

RETURN total_seconds (days, hours, minutes, 0) / 60;
END total_seconds;

END timer;
Part a. Write the PACKAGE specification for the PACKAGE BODY timer

(2 points)
Part b. Give an example using the function total_minutes (include

a "WITH" statement only) (1 point)
Part c. Give an example using the function total_minutes (include

a "WITH" and "USE" statements both) (1 point)
Part d. What is encapsulated in the PACKAGE timer (2 points)
Part e. Why does Ada support both PACKAGE specifications and

PACKAGE BODYs (4 points)
Part a answer:

PACKAGE timer IS
FUNCTION total_seconds (days, hours, minutes,

seconds: IN Natural)
RETURNS Natural;

FUNCTION total_minutes (days, hours, minutes: IN Natural)
RETURNS Natural;

END timer;
Grading: 1 point per FUNCTION and

-1 point for PACKAGE / END error

248

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Problem 3. (continued)
Part b answer:

WITH timer;
timer.total_minutes (days => 1, hours => 12, minutes => 32);
Grading: 1 point

Part c answer:
WITH timer; (JSE timer;
total_minutes (days => 1, hours => 12, minutes => 32);

Grading: 1 point
Part d answer:

Two functions are encapsulated in the package distance.
The functions are named total_seconds and total_minutes.
Grading: 1 point per FUNCTION named.

Part e answer:
PACKAGE specifications are interfaces to people to define PACKAGE
funcationality. PACKAGE specifications allow the distribution and
use of PACKAGES without the internals of the BODY being known and
seen by people. PACKAGE BODYs are interfaces to the compiler to
define the internal operations of the PACKAGE to the compiler.
Grading: 2 points for specification

2 points for body
-1 mostly correct, but not above language

249

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Final Examination Sequential Problem, Control Group, Fall 1997

Problem 5. (8 points total)
What is the output of the program given below:

WITH Ada.Text_IO; USE Ada.Text_IO;
PROCEDURE prob_05 IS

max : CONSTANT Integer := 10;
TYPE new_array IS ARRAY (l..max) of Character;
text : new_array ^('a'j'b'j'c'j'd'j'e'f'f'j'g'j'h'

BEGIN
FOR i IN 1..max LOOP

FOR j IN 1..i LOOP
put (Item => text(max-j));

END LOOP;
new_line;

END LOOP;
EXCEPTION

WHEN Constraint_Error =>
put (Item => "Ham and Cheese Sub, Please"
new_line;

WHEN Data_Error =>
put (Item => "Call For Pizza and Beer");
new_line;

END prob_05;
Answer for Prob_05 is:

i
ih
ihg
ihgf
ihgfe
ihgfed
ihgfedc
ihgfedcb
ihgfedcba
ihgfedcbaHam and Cheese Sub, Please

Grading: Positive logic: Triangular shape found +3
Computation correct +3
Constraint error found +2

Negative logic: Index off -1
Wrong direction -1
Loop order -1
No new_line -1
One loop missing -1

250

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Final Examination Sequential Problem, Control Group, Fall 1997

Problem 9. (10 points total)
Part a. Rewrite the FUNCTION as a PROCEDURE.

Also rewrite the calling statement. (4 points)
FUNCTION next_value (current_value : Integer) RETURN Integer IS
BEGIN

RETURN 120000 + ((current_value - 120000) * 6791) MOD 10000;
END next_value;

calling statement
my_num := next_value (current_value => my_num);

Part b. Write a PROCEDURE that solves the following expression:
(3 points)

2
a (b) + 2 c

r ------------ , where a, b, c, d, d, e, and r are integers
d e - a

Part c. Write a PROCEDURE that solved the following expression:
(3 points)

2 2
(vl - v2) + (hi - h2)

r ----------------------, where vl, v2, hi, h2, and r are
10 naturals

Answer for Part a:
PROCEDURE next_value (current_value : Integer;

result : OUT Integer) IS
BEGIN

result :=120000+((current_value-120000)*6791) MOD 10000;
END next_value;

calling statement
next_value (current_value => my_num), result => my_num;

Answer for Part b:
PROCEDURE x (a, b, c, d, e : IN Integer; r : OUT Integer) IS
BEGIN

r := (a * b * b + 2 * c) / (d * e - a) ;
END x;

Answer for Part c:
PROCEDURE y (vl, v2, hi, h2 : IN Natural; r : OUT Natural) IS
BEGIN

r : = ((vl - v2) ** 2 + (hi - h2) ** 2) / 10;
END y;

Grading: Routine type / BEGIN / END 1 point
type is either FUNCTION or PROCEDURE

Arithmetic assignment statement 1 point
Parameters 1 point
Calling statement (Part a only) 1 point

251

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Final Examination Sequential Problem, Control Group, Fall 1997

Problem 10. (10 points total)
Ada supports FUNCTIONS and PROCEDURES and provides different parameter
modes.

Part a. Name the parameter modes and given a one sentence
description. Which parameter mode is the default? (4 points)

Part b. Which parameter modes can be used by FUNCTIONS? (3 points)
Part c. Which parameter modes can be used by PROCEDURES? (3 points)
Answer Part a:

IN mode — parameter's value is passed to the called
routine, and parameter's value can not be
changed in called routine.
IN mode is the default.

OUT mode — parameter's value is passed out to the calling
routine parameter's value must be assigned by
called routine

IN OUT mode — parameter's value is passed to the called
routine, and parameter's value may be changed
by the called routine, and parameter's value
is passed out to the calling routine

Grading: 1 point per mode / 1 point for correct default

Answer for Part b:
FUNCTIONS use "IN" mode parameters only. Grading: 3 points

Answer for Part c:
PROCEDURES use all three modes of parameters.
Grading: 3 points for all three f 2 for two / 1 for one

252

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Final Examination Sequential Problem, Control Group, Fall 1997

Problem 11. (12 points total)
The map below provides information about each family on the block.

Cedar Street
I 1703 Cedar St. 1 1705 Cedar St. I 1707 Cedar St. I 1709 Cedar St. |
I Jones family

1
1 Harris familyi

1
1 Davis familyi

1 1
1 Mr. Nelson I
i t

I married
I 3 children
I 1 dog
I 1 car

i
1 married
I 3 children
1 2 dogs
I 2 cats
1 2 cars

1 married
I 1 child
I 2 dogs
1 1 cat
1 3 cars

I divorced I
1 no children |
1 1 truck |
1 1
1 1

I 1702 Oak St. I 1704 Oak St. I 1706 Oak St. I 1708 Oak St. |i i
I Peters family

1
I Murray family 1

1
I Mrs. Mennai

1 i
1 Adams family 1i i

I married
I 2 children
I 2 cars
I 1 truck

1
1 married
I 1 child
1 1 dog
I 1 cat
1 1 car

i
1 widowed
I 2 children
1 1 dog
1 1 car
I 1 truck

I unmarried I
i 7 children 1
! 4 cats I
! 2 cars 1
i 2 trucks I

Oak Street
Part a. Write the Ada statements to declare a record that hold

information about a family. (4 points)
Part b. Write the Ada statements to declare an array of records

(one record per family). (4 points)
Part c. Write the Ada statements place the "Murray" family

Information into a record number 6. (4 points)
One possible solution for part a:

TYPE marital
TYPE family

name
address
status
children
dogs
cats
cars
trucks

END RECORD;

IS (married, unmarried, divorced, widowed);
IS RECORD

String (1. . 10) ;
String (1..20);
marital;
Natural;
Natural;
Natural;
Natural;
Natural;

One possible solution for part b:
max : CONSTANT Natural := 8;
TYPE family_array IS ARRAY (l..max) of family;
family_data : family_array;

253

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

One possible solution for part c
family_data(6).name
famiiy_data(6).address
family_data(6).status
family_data{6).children
family_data{6).dogs
family_data(6).cats
family_data(6).cars
family_data(6).trucks

Grading for part a:
Enumeration declaration
TYPE ... Record / END RECORD
Identifier Definitions

Missing identifiers
Incorrect definition

Grading for part b:
TYPE declaration
Array Declaration

Grading for part c:
Valid syntax
Most values assigned
Lack of careless errors

= "Murray ";
= "1704 Oak Street
= married;
= 1 ;
= 1 ;
= 1 ;
= 1 ;
= 0 ;

1 point
1 point
2 points, as qualified below:

-1 point (more than one missing)
-1 point (such as, "x : string;")
2 points
2 points
2 points
1 point
1 point

254

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Final Examination Sequential Problem, Treatment Group One, Spring 1998

Problem 1. (7 points total)
What is the output of the program given below:

WITH Ada.Text_IO; USE Ada.Text_IO;
WITH Ada.Integer_Text_IO;
PROCEDURE Final_01 IS

x : Natural := 1;
y : Natural := 0;
t : Natural;

BEGIN
put ("Program Final_01 — Print Number Sequence");
new_line (Spacing => 2);
put (" Increment Next Number"); new_line;
put (" "); new_line;
FOR c IN 3..11 LOOP

t := x; x := 2*y + x; y := t;
Ada.Integer_Text_IO.put (Item => c, Width => 10);
Ada.Integer_Text_IO.put (Item => x, Width => 15);
new_line;

END LOOP;
END Final_01;
Answer:

Program Final_01 — Print Number Sequence
Increment Next Number

3
4
5
6
7
3
9

10
11

1
3
5

11
21
43
85

171
341

Grading: "Program" line 1 point
Column headers 1 point
Increment column indent 1 point
Increment column values 1 point
Next Number column indent 1 point
Next Number column values 2 points

255

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Final Examination Sequential Problem, Treatment Group One, Spring 1998

Problem 3. (10 points total)
The PACKAGE BODY distance is defined below. There are four items to
answered.

PACKAGE BODY distance IS
FUNCTION total_feet

(miles, furlongs, yards, feet, inches: IN Integer)
RETURN Float IS

BEGIN
RETURN Float (miles * 5280 +

furlongs * 8 +
yards * 3 +
feet) +

Float (inches) / 12.0;
END total_feet;
FUNCTION total_yards

(miles, furlongs, yards, feet, inches: IN Integer)
RETURN Float IS

BEGIN
RETURN total_feet

(miles, furlongs, yards, feet, inches) / 3.0 ;
END total_yards;

END distance;
Part a. Write the PACKAGE specification for the PACKAGE BODY

Distance (2 points)
Part b. Write a new FUNCTION total_furlongs that is outside the

PACKAGE, given that the first line of the program is as
follows: "WITH distance; USE distance;" (2 points)

Part c. What is encapsulated in the PACKAGE distance (2 points)
Part d. Why does Ada support both PACKAGE specifications and

PACKAGE BODYs (4 points)
Part a answer:

PACKAGE distance IS
FUNCTION total_feet

(miles, furlongs, yards, feet, inches: IN Integer)
RETURN Float ;

FUNCTION total_yards
(miles, furlongs, yards, feet, inches: IN Integer)
RETURN Float ;

END distance;
Grading: 1 point per FUNCTION and

-1 point for PACKAGE / END error

256

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Part b answer:
FUNCTION total_furlongs

(miles, furlongs, yards, feet, inches: IN Integer)
RETURN Float IS

2EGIN
RETURN total_feet (miles,furlongs,yards,feet,inches) / 660.0;

END total_furlongs;
Grading: 1 point for FUNCTION / BEGIN / END syntax

1 point for RETURN and computation

Part c answer:
Two functions are encapsulated in the package distance.
The functions are named total_feet and total_yards.
Grading: 1 point per FUNCTION named.

Part d answer:
PACKAGE specifications are interfaces to people to define PACKAGE
funcationality. PACKAGE specifications allow the distribution and
use of PACKAGES without the internals of the BODY being known and
seen by people. PACKAGE BODYs are interfaces to the compiler to
define the internal operations of the PACKAGE to the compiler.
Grading: 2 points for specification

2 points for body
-1 mostly correct, but not above language

257

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Final Examination Sequential Problem, Treatment Group One, Spring 1998

Problem 5. (8 points total)
What is the output of the program given below:

WITH Ada.Text_IO; USE Ada.Text_IO;
PROCEDURE final_05 IS

limit : CONSTANT Integer := 10;
TYPE new_array IS ARRAY (1..limit) of Character;
text : new_array : = (*F','I', *N’,'A', 'L', '* \ ’E',’X',’A','M');

BEGIN
FOR i IN 2..limit LOOP

FOR j IN i/2..i+1 LOOP
put (Item => text(j));

END LOOP;
new_line;

END LOOP;
EXCEPTION

WHEN Constraint_Error =>
put_line (Item => "Go to Pizza Hut and Relax");

WHEN Data_Error =>
put_line (Item => "Go to Hamburger Hamlet");

END final_05;
Answer for final_05 is:

FIN
FINA
INAL
INAL*
NAL*E
NAL*EX
AL*EXA
AL*EXAM
L*EXAMGo to Pizza Hut and Relax

Grading: Positive logic: Triangular shape found +3
Computation correct +3
Constraint error found +2

Negative logic: Index off
Wrong direction
Loop order
No new_line
One loop missing

258

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Final Examination Sequential Problem, Treatment Group One, Spring 1998

Problem 9. (10 points total)
Part a. Rewrite the FUNCTION as a PROCEDURE.

Also rewrite the calling statement. (4 points)
FUNCTION lex (par : Float) RETURN Float IS
BEGIN

RETURN 3.14159 + {(par - 21.0) * 91.67) / 1.719;
END lex;
— calling statement
my_num := lex (par => my_num);

Part b. Write a FUNCTION that solves the following expression:
(3 points)

2 1
a (x) - b (x) + c
--------------------, where a, b, c, d, d, and e are integers

e
d

Part c. Write a PROCEDURE that solved the following expression:
(3 points)

e 2 3
r = (g) + (j - g) * (c),

where a, c, e, g, j, and r are naturals
Answer for Part a:

PROCEDURE next_value (par : IN Float; result : OUT Float) IS
BEGIN

result := 3.14159 + ((par - 21.0) * 91.67) / 1.719;
END next_value;

calling statement
lex (par => my_num, result => my_num);

Answer for Part b:
FUNCTION x (a, b, c, d, e : IN Integer) RETURN Integer IS
BEGIN

RETURN (a * x * x - b * x + c) / (d ** e) ;
END x;

Answer for Part c:
PROCEDURE y (a, c, e, g, j : IN Natural; r : OUT Natural) IS
BEGIN

r : = g ** e + ((j - g) **2) * c ** 3
END y;

Grading: Routine type / BEGIN / END 1 point
type is either FUNCTION or PROCEDURE

Arithmetic assignment statement 1 point
Parameters 1 point
Calling statement (Part a only) 1 point

259

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Final Examination Sequential Problem, Treatment Group One, Spring 1998

Problem 10. (10 points total)
Ada supports FUNCTIONS and PROCEDURES and provides different parameter
modes.

Part a. Name the parameter modes and given a one sentence
description. Which parameter mode is the default?(4 points)

Part b. Which parameter modes can be used by FUNCTIONS? (2 points)
Part c. Which parameter modes can be used by PROCEDURES? (2 points)
Part d. Which parameter modes were used in class with TASKs? (2 pts)

Answer Part a:
IN mode — parameter's value is passed to the called

routine, and parameter's value can not be
changed in called routine.
IN mode is the default.

OUT mode — parameter's value is passed out to the calling
routine parameter's value must be assigned by
called routine

IN OUT mode — parameter's value is passed to the called
routine, and parameter's value may be changed
by the called routine, and parameter's value
is passed out to the calling routine

Grading: 1 point per mode / 1 point for correct default

Answer for Part b:
FUNCTIONS use "IN" mode parameters only. Grading: 2 points

Answer for Part c:
PROCEDURES use all three modes of parameters.
Grading: 2 points for all three / 1 for two

Answer for Part d:
TASKs used in class use "IN" mode parameters only.

Grading: 2 points for "IN"

260

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Final Examination Sequential Problem, Treatment Group One, Spring 1998

Problem 11. (12 points total)
The map below provides information about part of a elementary school:

Room 121 I Room 123 I Room 125 I Room 127
Ms. Harris
(married)

1
I Ms. Johnson
I (married)1

1
i Ms. Menna
I (unmarried)i

1
I Ms. Meanny
I (divorced)I

1st grade
17 boys
14 girls
1 hamster

1
I 2nd grade
I 15 boys
I 21 girls
I 2 hamsters
I 1 frog

i
I 3rd grade
I 15 boys
I 18 girls
I 1 snake
I 2 hamsters

1
I 4th grade
I 16 boys
1 16 girls
I no pets
1

Hallway

Room 122 I Room 124 I Room 126 I Room 128 1
Ms. Peters
(married)

1
I Ms. Solo
I (widowed)I

1
I Ms. Myers
I (divorced) 1

1
I Ms. Ford
I (unmarried)i

5th grade
20 boys
16 girls
no pets

1
I 6th grade
I 18 boys
I 17 girls
I 30 frogs

1
I Kindergarden
I 15 boys
1 15 girls
I 4 hamsters

1 Nursery
I 12 boys
I 14 girls
1 no pets

Part a. Write the Ada statements to declare a record that hold
information about a class, (4 points)

Part b. Write the Ada statements to declare an array of records
(one record per class). (4 points)

Part c. Write the Ada statements place Ms. Johnson's class
information

into record number 2. (4 points)
One possible solution for part a:

TYPE marital IS (married, unmarried, divorced, widowed);
TYPE class IS RECORD

teacher String (1
status marital;
room_num Natural;
grade Character
boys Natural;
girls Natural;
hamsters Natural;
snakes Natural;
frogs Natural;

END RECORD;

261

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

One possible solution for part b:
max : CONSTANT Natural := 8;
TYPE class_array IS ARRAY (l..max) of family;
class_data : class_array;

One possible solution for part c:
this : family; — is assumed
this.teacher
this.status
this.room_num
this.grade
this.boys
this.girls
this.hamsters
this.snakes
this.frogs

"Johnson
married;
123;
’ 2 ' ;
15;
2 1 ;
2 ;
1
1

family data(2) := this;

Grading for part a:
Enumeration declaration
TYPE Record / END RECORD
Identifier Definitions

Missing identifiers
Incorrect definition

Grading for part b:
TYPE declaration
Array Declaration

Grading for part c:
Valid syntax
Most values assigned
Lack of careless errors

1 point
1 point
2 points, as qualified below:
-1 point (more than one missing)
-1 point (such as, "x : string;"]
2 points
2 points
2 points
1 point
1 point

262

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Final Examination Sequential Problem, Treatment Group Two, Fall 1998

Problem 1. (7 points total)
What is the output of the program given below:

WITH Ada.Text_IO; USE Ada.Text_IO;
WITH Ada.Integer_Text_IO;
PROCEDURE Final_01 IS

x : Natural : = 1;
y : Natural := 0;
t : Natural;

BEGIN
put ("Program Final_0I — Print Number Sequence");
new_line (Spacing => 2);

FOR c IN 2..10 LOOP
t := x; x := 2*y + c; y := t;
Ada.Integer_Text_IO.put (Item => c, Width => 10)
Ada.Integer_Text_IO.put (Item => x, Width => 15)
new_line;

END LOOP;
END Final 01;

put (" Increment
put (" ---------

Next Number")); new_line;
); new line;

Answer:
Program Final_01 — Print Number Sequence

Increment Next Number
2
3
4
5
6
7
8
9

10 114

2
5
8

15
22
37
52
83

Grading: "Program" line
Column headers
Increment column indent 1
Increment column values 1
Next Number column indent 1
Next Number column values 2

1 point
1 point
1 point
1 point
1 point
points

263

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Final Examination Sequential Problem, Treatment Group Two, Fall 1998

Problem 3. (10 points total)
The PACKAGE BODY distance is defined below. There are four items to
answered.

PACKAGE BODY distance IS
FUNCTION total_feet

(miles, furlongs, yards, feet, inches: IN Integer)
RETURN Float IS

BEGIN
RETURN Float (miles * 5280 +

furlongs * 8 +
yards * 3 +
feet) +

Float (inches) / 12.0;
END total_feet;
FUNCTION total_yards

(miles, furlongs, yards, feet, inches: IN Integer)
RETURN Float IS

BEGIN
RETURN total_feet

(miles, furlongs, yards, feet, inches) / 3.0 ;
END total_yards;

END distance;
Part a. Write the PACKAGE specification for the PACKAGE BODY

Distance (2 points)
Part b. Write a new FUNCTION total_furlongs that is outside the

PACKAGE, given that the first line of the program is as
follows: "WITH distance; USE distance;" (2 points)

Part c. What is encapsulated in the PACKAGE distance (2 points)
Part d. Why does Ada support both PACKAGE specifications and

PACKAGE BODYs (4 points)
Part a answer:

PACKAGE distance IS
FUNCTION total_feet

(miles, furlongs, yards, feet, inches: IN Integer)
RETURN Float ;

FUNCTION total_yards
(miles, furlongs, yards, feet, inches: IN Integer)
RETURN Float ;

END distance;
Grading: 1 point per FUNCTION and

-1 point for PACKAGE / END error

264

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Part b answer:
FUNCTION total_furlongs

(miles, furlongs, yards, feet, inches: IN Integer)
RETURN Float IS

BEGIN
RETURN total_feet (miles,furlongs,yards,feet,inches) / 660.0;

END total_furlongs;
Grading: 1 point for FUNCTION / BEGIN / END syntax

1 point for RETURN and computation
Part c answer:

Two functions are encapsulated in the package distance.
The functions are named total_feet and total_yards.

Grading: 1 point per FUNCTION named.
Part d answer:

PACKAGE specifications are interfaces to people to define PACKAGE
funcationality. PACKAGE specifications allow the distribution and
use of PACKAGES without the internals of the BODY being known and
seen by people. PACKAGE BODYs are interfaces to the compiler to
define the internal operations of the PACKAGE to the compiler.
Grading: 2 points for specification

2 points for body
-1 mostly correct, but not above language

265

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Final Examination Sequential Problem, Treatment Group Two, Fall 1998

Problem 5. (8 points total)
What is the output of the program given below:

WITH Ada.Text_IO; USE Ada.Text_IO;
PROCEDURE final_05 IS

limit : CONSTANT Integer := 10;
TYPE new_array IS ARRAY (1..limit) of Character;
text : new_array :=('F','I','N','A','L ','*','E ','X','A

BEGIN
FOR i IN 2..limit LOOP

FOR j IN 1..i LOOP
put (Item => text(limit-j));

END LOOP;
new_line;

END LOOP;
EXCEPTION

WHEN Constraint_Error =>
put_line (Item => "Go to Pizza Hut and Relax

WHEN Data_Error =>
put_line (Item =*> "Go to Hamburger Hamlet");

END final_05;
Answer for final_05 is:

AX
AXE
AXE*
AXE*L
AXE*LA
AXE*LAN
AXE*LANI
AXE*LANIF
AXE*LANIFGo to Pizza Hut and Relax

Grading: Positive logic: Triangular shape found +3
Computation correct +3
Constraint error found +2

Negative logic: Index off -1
Wrong direction -1
Loop order -1
No new_line -1
One loop missing -1

266

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Final Examination Sequential Problem, Treatment Group Two, Fall 1998

Problem 9. (10 points total)
Part a. Rewrite the FUNCTION as a PROCEDURE.

Also rewrite the calling statement. (4 points)
FUNCTION lex (par : Float) RETURN Float IS
BEGIN

RETURN 3.14159 + ((par - 21.0) * 91.67) / 1.719;
END lex;
— calling statement
my_num :=* lex (par => my_num);

Part b. Write a FUNCTION that solves the following expression:
(3 points)

2 1
a (x) - b (x) + c
--------------------, where a, b, c, d, and e are integers

e
d

Part c. Write a PROCEDURE that solved the following expression:
(3 points)

e 2 3
r = (g) + (j - g) * (c),

where a, c, e, g, j, and r are naturals
Answer for Part a:

PROCEDURE next_value (par : IN Float; result : OUT Float) IS
BEGIN

result := 3.14159 + ((par - 21.0) * 91.67) / 1.719;
END next_value;
— calling statement
lex (par => my_num, result => my_num);

Answer for Part b:
FUNCTION x (a, b, c, d, e : IN Integer) RETURN Integer IS
BEGIN

RETURN (a * x * x - b * x + c) / (d ** e) ;
END x;

Answer for Part c:
PROCEDURE y (a, c, e, g, j : IN Natural; r : OUT Natural) IS
BEGIN

r : = g ** e + ((j - g) **2) * c ** 3
END y;

Grading: Routine type / BEGIN / END 1 point
type is either FUNCTION or PROCEDURE

Arithmetic assignment statement 1 point
Parameters 1 point
Calling statement (Part a only) 1 point

267

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Final Examination Sequential Problem, Treatment Group Two, Fall 1998

Problem 10. (10 points total)
Ada supports FUNCTIONS and PROCEDURES and provides different parameter
modes.

Part a. Name the parameter modes and given a one sentence
description. Which parameter mode is the default?(4 points)

Part b. Which parameter modes can be used by FUNCTIONS? (2 points)
Part c. Which parameter modes can be used by PROCEDURES? (2 points)
Part d. Which parameter modes were used in class with TASKs? (2 pts)

Answer Part a:
IN mode — parameter's value is passed to the called

routine, and parameter's value can not be
changed in called routine.
IN mode is the default.

OUT mode — parameter's value is passed out to the calling
routine parameter's value must be assigned by
called routine

IN OUT mode — parameter's value is passed to the called
routine, and parameter's value may be changed
by the called routine, and parameter's value
is passed out to the calling routine

Grading: 1 point per mode / 1 point for correct default
Answer for Part b:

FUNCTIONS use "IN” mode parameters only. Grading: 2 points
Answer for Part c:

PROCEDURES use all three modes of parameters.
Grading: 2 points for all three / 1 for two

Answer for Part d:
TASKs used in class use "IN" mode parameters only.
Grading: 2 points for "IN"

268

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Final Examination Sequential Problem, Treatment Group Two, Fall 1998

Problem 11. (12 points total)
The map below provides information about part of a elementary school:

Room 121 I Room 123 I Room 125 I Room 127
Ms. Harris

1
1 Ms. Johnson

1
I Ms. Menna

1
1 Ms. Meanny

(married) I (married)I I (unmarried)I I (divorced) 1
1st grade

1
I 2nd grade

1
I 3rd grade

1
I 4th grade

17 boys 1 15 boys I 15 boys I 16 boys
14 girls I 21 girls I 18 girls 1 16 girls
1 hamster I 2 hamsters I 1 snake I no pets

I 1 frog I 2 hamsters 1
•+ + +

Hallway
+ + +

Room 122 1 Room 124 I Room 126
|

I Room 128
t

Ms. Peters
1

I Ms. Solo
1

I Ms. Myers
I

1 Ms. Ford
(married) I (widowed)

I

I (divorced)
1

I (unmarried)
1

5th grade
1

I 6th grade
1

I Kindergarden
1

I Nursery
20 boys 1 18 boys I 15 boys I 12 boys
16 girls I 17 girls I 15 girls I 14 girls
no pets I 30 frogs I 4 hamsters I no pets

Part a. Write the Ada statements to declare a record that hold
information about a class, (4 points)

Part b. Write the A.da statements to declare an array of records
(one record per class). (4 points)

Part c. Write the Ada statements place Ms. Johnson's class
Information into record number 2. (4 points)

269

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

One possible solution for part a:
TYPE marital IS (married, unmarried, divorced, widowed);
TYPE class IS RECORD

teacher : String (1..10);
status : marital;
room_num : Natural;
grade : Character;
boys ; Natural;
girls : Natural;
hamsters : Natural;
snakes : Natural;
frogs : Natural;

END RECORD;
One possible solution for part b;

max : CONSTANT Natural := 8;
TYPE class_array IS ARRAY (l..max) of family;
class_data : class_array;

One possible solution for part c:
this : family; — is assumed
this.teacher
this.status
this.room_num
this.grade
this.boys
this.girls
this.hamsters
this.snakes
this.frogs

"Johnson
married;
123;
' 2 ' ;

15;
2 1 ;
2 ;
1 ;
1;

family_data(2) := this;
Grading for part a:

Enumeration declaration
TYPE ... Record / END RECORD
Identifier Definitions

Missing identifiers
Incorrect definition

Grading for part b:
TYPE declaration
Array Declaration

Grading for part c:
Valid syntax
Most values assigned
Lack of careless errors

1 point
1 point
2 points, as qualified below:
-1 point (more than one missing)
-1 point (such as, "x : string;")
2 points
2 points
2 points
1 point
1 point

270

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Filial Examination Concurrency Problem For Both Treatment Groups

Problem 2. (10 points total)
In class, we discussed semaphores and busy waits. Write two small
tasks as specified below:

Part a: Write a semaphore task that has the following four states in
the order specified: pink, mauve, gray, beige. The task
must also be able to terminate correctly (pick any state for
termination). Write only the TASK BODY. (5 points)

Part b: Write a busy wait task that repeats the word "Hello" until
the task receives the message goodbye. Write both the TASK
specification and the TASK BODY. (5 points)

One possible solution for Part a:
TASK BODY semaphore IS
BEGIN

LOOP
ACCEPT pink;
ACCEPT mauve;
ACCEPT gray;
SELECT

ACCEPT beige;
OR

ACCEPT quit; EXIT;
END SELECT;

END LOOP;
END semaphore;

One Possible solution for Part b:
TASK busy_wait IS — or TASK TYPE busy_wait IS

ENTRY goodbye;
END busy_wait;
TASK BODY busy_wait IS
BEGIN

LOOP
put_line (Item => "Hello");
SELECT

ACCEPT goodbye; EXIT;
ELSE

NULL;
END SELECT;

END LOOP;
END busy_wait;

Grading Part a: Syntax 2 points
Logic 2 points
Exit Loop 1 point
Nothing off for extra code

Part b: Syntax 2 points
Logic 2 points
Entry / Accept / Exit 1 Point
Multiple goodbyes -1 point
Nothing off for extra code

271

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Final Examination Concurrency Problem For Both Treatment Groups

Problem 4. (12 points total)
The program below contains two tasks. Read the program and then answer
the questions after the program.
WITH Ada.Text_IO; USE Ada.Text_IO;
WITH Ada.Float_Text_IO; USE Ada.Float_Text_IO;
WITH Ada.Integer_Text_IO; USE Ada.Integer_Text_IO;
PROCEDURE game IS

time_left : Duration : = 23.0;
TASK TYPE player (my_id, offset, pause : Natural);
TASK BODY player IS
BEGIN

DELAY Duration(offset);
LOOP

put (Item => "Player"); put (Item => my_id, Width => 2);
IF time_left = 0.0 THEN put (Item => '* won! "); EXIT;
ELSIF time_left =1.0 THEN time_left := 0.0;

put (Item => " lost!"); EXIT;
ELSIF time_left =2.0 THEN time_left := 1.0;

put (Item => " time left is 1.0");
ELSE put (Item => " time left is");

put (Item => Float(time_left), Fore=>3, Aft=>l, Exp=>0);
time_left := time_left - Duration (my_id);

END IF;
new_line;
DELAY Duration(pause);

END LOOP;
END player;

player_one : player (my_id => 1, offset => 1, pause => 2);
player_two : player (my_id => 2, offset => 0, pause => 2);

BEGIN
NULL;

END game;
Part a. What is the output of the program given above. (6 points)
Part b. The player_one and player_two lines of the program are

changed to read as shown below. Which player wins? (4 points)
player_one : player (my_id => 1, offset => 1, pause => 1);
player_two : player (my_id => 2, offset => 1, pause => 1);

Part c. The variable "time_left" is outside the tasks. What is this
variable called? (2 points)

272

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Problem 4. (continued)

Answer a

Answer b

Answer c

Grading:

Player 2 time left is 23.0
Player 1 time left is 21.0
Player 2 time left is 20.0
Player 1 time left is 18.0
Player 2 time left is 17.0
Player 1 time left is 15.0
Player 2 time left is 14.0
Player 1 time left is 12.0
Player 2 time left is 11.0
Player 1 time left is 9.0
Player 2 time left is 8.0
Player 1 time left is 6.0
Player 2 time left is 5.0
Player 1 time left is 3.0
Player 2 time left is 1.0
Player 1 lost!1 Player 21 won

Correct start 1 point

Correct middle 3 points
Some math errors -1
Format problems -1

Correct Ending 2 points
Do not know! Race condition between two tasks.
Non-deterministic behavior.
Grading: any of three statements explained 4 points

or
any similar concept 2 points

Shared memory variable. 2 points
Partial credit for "global" used by "both" 1 point

273

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Final Examination Concurrency Problem For Both Treatment Groups

Problem 7. (10 total points)
Write two TASKs (one named "send" and one named "receive"). The two
tasks communicate by message passing. The task "send" sends the lower
case letters of the alphabet, one character at a time, to the task
named "receive". The task "send" communicates to the task "receive"
that it is time to stop execution by sending the tilde character ('-')•

One possible solution is:
Grading:

TASK send; 1 point
TASK receive IS 1 point

ENTRY input (message : IN Character);
END receive;
TASK BODY send IS

TYPE new_array IS ARRAY (1..26) of Character;
letters : new_array := ('a','b1,---,’y’,’z’);

BEGIN
FOR i IN 1..26 LOOP --+

receive.input (message => letters(i)); I 2 points
END LOOP; --+
receive.input (message => ’ ~'); — the rest 2 points

END send;
TASK BODY receive IS

x : character;
BEGIN

LOOP
— +

ACCEPT input (message : IN Character) DO I 3 points
x := message; I

END input; — +
IF x = THEN EXIT; END IF;
put (Item => x); — the rest 1 point

END LOOP;
END receive;

274

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Final Examination Concurrency Problem For Both Treatment Groups

Problem 8. (9 points total)
The prior problem, problem 7, uses message passing. In this problem,
use shared memory concepts to answer the questions below. The shared
memory variable is as follows:

sml : Character — shared memory letter
Part a. Describe how access to shared memory variables is

controlled. (2 points)
Part b. Describe how access to shared memory variables was

controlled in project 9. (2 points)
Part c. Rewrite the TASK BODY send (of problem 7) for shared memory

access. DO NOT WRITE any other task; just assume what
is needed exits. (5 points)

Answer a:
Access to shared memory is controlled as a "critical region"
Only one task at a time can enter a critical region.
Critical regions can be established using semaphores.
(2 points)

Answer b: (same answer as Part a, just related to project 9)
Access to shared memory is controlled as a "critical region"
Only one task at a time can enter a critical region.
Critical regions can be established using semaphores.
(2 points)

Answer c:
TASK BODY send IS

TYPE new_array IS ARRAY (1..26) of Character;
letters : new_array := ('a'j'b', to ,'y’,'z');

BEGIN
FOR i IN 1..26 LOOP

synch.lock; sml := letters(i); synch.unlock;
delay 0.0;

END LOOP;
synch.lock; sml := synch.unlock;

END send;
Grading of Part c: TASK / BEGIN / END syntax 2 points

Critical region entry 1 point
sml := letters(i); 1 point
Critical region leave 1 point
See any message passing -1 point

275

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Sample Final Exam Question 6 — Material Not Included In The Experiment

Problem 6. (12 total points)
This problem involves the seven dwarfs and moving dwarfs around.
Complete the program named "final_06" by doing the following:

a. Assign the seven dwarfs to the array 'x'
b. Display the names of the dwarfs in order
c. Input the name of one dwarf
c. Swap the dwarf name with another dwarf name that is as "far away"

from its original position as possible
d. Display the names of the dwarfs in the new order
e. Sample program execution is given below:

The original dwarf order is:
sleepy bashful dopey grumpy happy doc sneezy

Enter dwarf name -> doc
The new dwarf order is:
doc bashful dopey grumpy happy sleepy sneezy
A A

One possible solution is:
WITH Ada.Text_IO; USE Ada.Text_IO;
PROCEDURE final_06 IS

TYPE dwarf IS (sleepy, bashful, dopey, grumpy,
happy, doc, sneezy);

PACKAGE dwarf_io IS NEW
Ada.TEXT_IO.Enumeration_IO (enum => dwarf);

TYPE dwarf_array IS ARRAY (1..7) of dwarf;
x : dwarf_array;

The answer is as follows:
dwarf_name : dwarf;
num : Natural;

BEGIN
FOR i IN 1..7 LOOP — Code Group 1

x(i) := dwarf'val(i—1);
END LOOP;
put_line (Item => "The original dwarf order is: ");
FOR i IN 1..7 LOOP — Code Group 2

put (Item => ” ");
dwarf_io.put (Item => x(i));

END LOOP;
new_line;
put (Item => "Enter dwarf name -> "); — Code Group 3
dwarf_io.get (Item => dwarf_name);
new line;

276

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

num := dwarf'pos(dwarf_name) +1; — Cnde Group 4
IF num > 4 THEN

x(l) := dwarf_name;
x(num) := dwarf'val(0);

ELSE
x(7) := dwarf_name;
x(num) := dwarf'val(6);

END IF;
put_line (Item => "The new dwarf order is:");
FOR i IN 1..7 LOOP — Code Group 5

put (Item => " ");
dwarf_io.put (Item => x(i));

END LOOP;
new_line (spacing => 2);

END final 06;

Grading: Problem is designed as extra credit problem.
Students told in class to do this one last.

Code Group
1
2
3
4
5

Spring 1998
3 points
2 points
2 points
3 points
2 points

277

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

APPENDIX H. CLASS SURVEY

CSci 49/50/51/131 Student Survey Form - Fall 1997 Semester

This form is set up to make it fairly easy for you to enter the
desired information. Just start typing at the beginning of each line.
__________________________________ Course and Section
__________________________________ Your Last (family) Name
__________________________________ Your First(given) Name
__________________________________ Your phone number
__________________________________ Your e-mail address
__________________________________Your Major or Desired Major
__________________________________ Year in Your Major (1,2,3,4,Grad,None)
__________________________________Are you required to take this course?

Describe any programming experience you have, including languages you have
studied (high school, other college-level course, work-related, etc.)

Describe the most important things you desire to gain from taking this course.

If you have a computer in your home, please describe it briefly.
(Amiga, Atari, Commodore, Apple n, Macintosh, IBM or compatible,
which model, memory, disk, modem, printer, etc.)

278

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

APPENDIX I. STUDENT DEMOGRAPHIC DATA

Student Demographic Data — Students In The Experiment,
Control Group, Fall 1997

Class Subject M /F Age
College
Year Major

Class
Required

Prior
Skills

1 01 F 21 1 Med E. Yes None
1 03 F 20 3 CS Yes Lost
1 05 M 19 2 CS Yes Lost
1 06 F 19 1 CE Yes None
1 07 M 23 5 CS Yes HS-2
1 08 F 18 1 CS Yes None
1 10 F 20 1 Sys Anl Yes None
1 13 M 19 1 CS Yes None
1 14 F 19 1 CS Yes None
1 15 F 18 1 CS Yes None
1 16 F 20 3 Inti Aff. No None
1 17 F 18 1 CS Yes None
1 18 M 22 2 CS Yes Some
1 21 M 18 1 CE Yes HS-1
1 22 M 18 1 CS Yes HS-1
1 23 M 20 3 Math No None
1 24 M 18 1 CS Yes HS-1
1 27 F 19 1 Sys Anl Yes None
1 28 M 18 I CE Yes None
1 29 F 19 2 Econ No None
1 30 M 19 None CE Yes Lost
1 32 M 24 5 CS No HTML
1 34 M 18 1 Econ Yes None
1 35 M 20 2 CE Yes HS-2

Additional legend information is presented below:

• A-l — Introduction to Computing, CSci 51, repeat student (Ada-1)
• C++ — college, business, military course(s) and experience in C++
• C-l — one college level programming course
• C-2 — two college level programming courses
• C-X — college level programming course experience
• xx — student refused or neglected to provide request information

Section 5.1 of the document, titled Student Population presents the coding of prior skills
for students in the experiment.

279

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Student Demographic Data — Students Not In Experiment,
Control Group, Fall 1997

Class Subject M /F Age
College

Year Major
Class

Required
Prior
Skills

Excluded Due to Ex]perience
1 04 M 24 1 CS Yes C++
1 11 M 19 2 CE Yes C-l
1 31 M 20 3 CS Yes C-l
1 33 M 21 3 Math No C-l

Excluded Due to Withdrawal or
(Withdrawal =

,ack of Participation
5)

1 02 F 18 1 CE Yes None
1 09 F XX 5 CS Yes Lost
1 12 M 19 XX XX XX XX

1 19 F 24 5 None No None
1 20 F 24 2 CS Yes None
1 25 F 19 2 History No None
1 26 M 18 1 CS No None

280

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Student Demographic Data — Students In The Experiment,
Treatment Group One, Spring 1998

Class Subject M /F Age
College
Year Major

Class
Required

Prior
Skills

2 01 F 18 1 CS Yes None
2 02 F 19 1 CS Yes None
2 05 M 18 1 CS Yes None
2 06 M 19 1 CS Yes HS-1
2 07 F 20 None No None
2 12 M 18 1 CS Yes HS-1
2 14 M 19 1 CS Yes HS-1
2 18 M 27 1 CE Yes None
2 19 F 18 1 CS Yes HS-1
2 20 M 18 1 CE Yes None
2 21 F 19 I Crim No None
2 22 M 19 1 CE Yes HTML
2 23 M 19 I CS Yes HS-1
2 24 M 19 1 CS Yes Some
2 25 F 18 1 CS Yes HS-1
2 26 M 19 I CE Yes HS-1
2 29 M 19 1 CS Yes None
2 30 M 19 1 CE Yes None
2 31 M 18 1 CS Yes None
2 32 F 18 1 CS Yes HTML
2 33 M 19 1 CS Yes None
2 34 F 19 1 CS Yes None
2 35 F 18 1 CS Yes HS-1
2 37 M 18 1 None No HS-1
2 38 M 18 1 CS Yes None
2 42 M 19 1 CE Yes None
2 43 M 18 1 CS Yes None
2 45 F 18 1 CS Yes None
2 46 M 18 1 CE Yes None
2 47 F 20 1 Sys Anl Yes None
2 48 M 19 1 CS Yes None
2 49 F 19 1 CS Yes None
2 50 M 19 1 CE Yes HS-1
2 51 M 18 1 CS Yes None
2 52 F 18 1 CE Yes None
2 54 M 20 1 Social No Lost
2 57 M 20 2 Poli. Sci Yes None
2 58 M 18 1 CS Yes HS-1

281

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Class Subject M /F Age
College
Year Major

Class
Required

Prior
Skills

2 59 M 18 1 CS Yes HS-2
2 60 M * nid 1 CE Yes None
2 61 F 18 1 Sys Anl Yes None
2 62 F 18 1 Sys Anl Yes None
2 63 F 18 1 CS Yes None
2 64 M 19 1 CS Yes Self
2 66 M 18 1 CS Yes None
2 68 M 21 Psych Yes None
2 69 M 19 1 CS Yes HS-2
2 70 M 19 1 CS Yes HS-2
2 72 M 20 1 CS Yes HTML
2 73 M 18 1 CS Yes Self
2 75 M 17 1 CE Yes None
2 76 F 17 1 CS Yes None

282

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Student Demographic Data — Students Not In Experiment,
Treatment Group One, Spring 1998

Class Subject M /F Age
College
Year Major

Class
Required

Prior
Skills

Excluded Due to Experience
2 28 M 20 2 Psych No C-l
2 40 M 19 1 CS Yes C++
2 41 M 27 2 CE Yes C++
2 56 M 19 2 CE Yes C-2
2 67 M 22 2 CE Yes C-l

Exclud ed Due o Lack of Participation or Suicidal Final Exam Score
2 08 M 19 1 CS Yes HTML
2 11 M 20 2 CS Yes Lost
2 13 M 19 1 CS Yes XX

2 16 M 18 1 CS Yes XX

2 27 M 19 1 Finance No None
Exc uded Due to Wit

(Withdrawal =
idrawal
14)

2 03 M 18 1 Sys Anl Yes None
2 04 M XX XX XX XX XX

2 09 M XX 2 Law No None
2 10 M 18 1 CS Yes HS-1
2 15 F 20 2 CS Yes A-l
2 17 M XX XX XX XX XX

2 36 M 29 1 CE Yes None
2 39 M 25 1 CS Yes C-X
2 44 M 19 1 CE Yes HS-2
2 53 M 20 1 CS Yes None
2 55 M 18 1 CS Yes None
2 65 M 19 1 CS Yes None
2 74 F 19 2 Business No XX

2 71 M 18 1 CE Yes HS-1

283

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Student Demographic Data — Students In The Experiment,
Treatment Group Two, Fail 1998

Class Subject M /F Age
College

Year Major
Class

Required
Prior
Skills

3 01 M 18 1 CE Yes None
3 02 M 20 1 CE Yes None
3 04 M 43 1 CS Yes Lost
3 05 M 19 2 Sys Anl Yes None
3 06 M 20 1 CE Yes None
3 07 M 21 1 CS Yes HTML
3 09 M 19 2 CS Yes Some
3 10 M 18 1 CE Yes None
3 11 F 21 4 Comm No None
3 12 M 20 2 Econ Yes None
3 15 F 19 1 None Yes Java
3 16 F 18 2 Sys Anl Yes None
3 17 M 21 3 CE Yes HS-2*
3 19 F 18 1 None No None
3 22 M 19 3 Econ Yes None
3 23 F 22 2 CE Yes None
3 25 M 19 2 CS Yes None
3 27 F 19 2 Info Sys No HS-1
3 32 F 18 1 CS Yes HS-2
3 34 M 32 5 CS Yes Lost
3 35 M 19 2 CS Yes HTML

* Equivalent experience to HS-2

284

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Student Demographic Data — Students Not In Experiment,
Treatment Group Two, Fall 1998

Class Subject M /F Age
College

Year Major
Class

Required
Prior
Skills

Excluded Due to Experience
3 14 F 25 5 CS Yes C-2

Excluded Due To Handicap Interferes With Performance
3 3 M 25 1 CS Yes Lost

Excluded Due To Prior Csci 51 Class Attendance
3 21 F 18 2 CS Yes A-l
3 24 M 19 2 CS Yes A-l
3 36 M 18 2 CS Yes A-l

Excluded Due to Withdrawal or Lack of Participation
(Withdrawals = 10)

3 8 M 20 2 Info Sys No None
3 13 F 17 2 CS Yes None
3 18 F 21 2 Econ No None
3 20 M 21 1 CS Yes HTML
3 26 F 25 2 CS Yes Lost
3 28 M 18 1 CS Yes HTML
3 29 M 22 N/A None No None
3 30 M 19 2 ERMed. No None
3 31 M 19 2 Russ Yes None
3 33 M 22 5 None No None
3 37 M 19 1 Sys Anl Yes None
3 38 M 29 1 CE Yes A-l

285

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

APPENDIX J. EXAMINATION AND PROJECT SCORES

This section of the document presents the examination and project scores used in

the experiment. The organization of this appendix is as follows:

1. Mid-Term Examination Scores

2. Project 2 Through 5 Scores

3. Project 9 Scores — The Last and Large Project

4. Final Examination Sequential Question Scores

5. Final Examination Concurrency Question Scores

The student codes for all experimental subjects are included in the tables.

286

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Mid-Term Scores.

Mid-Term Scores, Control Group, Fall 1997

Student Question Question Question Question Question Question Total
Code 1 2 3 4 5 6 Score
1 01 13 6 11 3 3 5 41
1 03 13 9 9 3 5 8 47
1 05 17 8 3 9 0 8 45
1 06 8 5 3 5 9 8 38
1 07 19 7 13 10 11 11 71
1 08 17 10 9 10 11 to 67
1 10 14 8 6 10 9 12 59
1 13 16 10 15 10 10 9 70
1 14 11 8 5 9 8 2 43
1 15 17 9 14 9 12 9 70
1 16 19 9 15 10 12 11 76
1 17 12 8 7 10 10 7 54
1 18 19 8 13 7 7 11 65
1 21 16 10 15 10 12 12 75
1 22 16 9 15 10 12 8 70
1 23 13 7 3 7 6 11 47
1 24 20 10 12 10 12 12 76
1 27 14 7 4 8 4 10 47
1 28 17 9 15 10 10 12 73
1 29 16 9 9 5 10 4 53
1 30 13 8 13 10 12 9 65
1 32 19 9 15 10 8 10 71
1 34 13 7 8 9 0 8 45
1 35 16 10 11 10 12 10 69

287

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Mid-Term Scores, Treatment Group One, Spring 1998

Student
Code

Question
1

Question
2

Question
3

Question
4

Question
5

Question
6

Total
Score

2 01 14 8 6 10 11 11 60
2 02 9 7 8 0 2 2 28
2 05 18 7 8 10 8 11 62
2 06 11 7 11 9 6 9 53
2 07 12 7 8 10 7 2 46
2_12 13 5 13 10 9 11 61
2_14 14 8 5 8 12 5 52
2 18 17 8 6 9 8 6 54
2_19 11 8 8 9 10 12 58
2 20 16 8 5 10 9 10 58
2 21 13 7 8 10 9 11 58
2 22 17 7 7 10 4 4 49
2 23 13 8 13 9 9 12 64
2 24 20 6 10 9 12 12 69
2 25 13 6 9 7 4 7 47
2 26 13 9 6 9 10 10 57
2 29 13 6 10 9 10 7 55
2 30 16 7 9 10 12 7 61
2 31 18 10 11 10 9 12 70
2 32 12 5 5 4 8 8 42
2 33 16 9 9 8 12 10 64
2 34 7 3 5 2 3 0 20
2 35 10 8 5 8 2 2 35
2 37 14 7 15 8 11 12 67
2 38 19 9 13 10 12 6 69
2 42 15 8 5 7 8 11 54
2 43 6 7 1 6 7 2 29
2 45 14 8 5 10 9 12 58
2 46 10 5 2 10 12 4 43
2 47 11 5 13 8 8 9 54
2 48 20 8 11 10 9 9 67
2 49 15 9 2 10 11 12 59
2 50 10 8 11 8 10 6 53
2 51 19 9 15 10 10 12 75
2 52 16 6 9 10 12 11 64
2 54 6 6 0 8 6 6 32
2 57 11 9 12 8 8 10 58
2 58 14 9 13 10 10 12 68
2 59 19 9 14 10 11 12 75

288

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Student
Code

Question
1

Question
2

Question
3

Question
4

Question
5

Question
6

Total
Score

2 60 15 6 5 10 11 10 57
2 61 15 7 6 8 10 4 50
2 62 19 8 10 10 12 10 69
2 63 17 8 12 9 7 12 65
2 64 20 8 11 10 12 12 73
2 66 16 8 8 10 5 9 56
2 68 9 6 7 8 7 2 39
2 69 11 6 11 10 7 7 52
2 70 9 7 10 10 6 6 48
2 72 17 10 14 9 7 10 67
2 73 18 8 13 10 9 12 70
2 75 18 9 11 10 10 11 69
2 76 9 6 6 10 4 3 38

Mid-Term Scores, Treatment Group Two, Fall 1998

Student
Code

Question
1

Question
2

Question
3

Question
4

Question
5

Question
6

Total
Score

3 01 20 10 14 10 12 12 78
3 02 9 6 3 1 6 3 28
3 04 4 7 13 8 11 6 49
3 05 15 9 8 3 0 3 38
3 06 10 2 0 5 9 2 28
3 07 17 8 8 9 7 9 58
3 09 13 8 9 10 12 12 64
3 10 19 9 11 10 12 12 73
3 11 18 8 8 9 12 12 67
3 12 18 9 10 10 11 12 70
3 15 16 6 6 8 11 12 59
3 16 19 8 13 10 9 12 71
3 17 15 7 10 8 11 6 57
3 19 14 8 3 10 11 11 57
3 22 17 6 4 0 9 10 46
3 23 10 3 3 4 3 2 25
3 25 18 9 10 9 8 12 66
3 27 17 8 11 10 5 12 63
3 32 20 8 11 10 12 9 70
3 34 16 5 5 0 0 1 27
3 35 15 5 7 5 12 9 53

289

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Project Two Through Five Scores.

Projects Two Through Five, Control Group, Fall 1997

Student
Code

Project
2

Project
3

Project
4

Project
5

Project
2->5

Average

Project
2->5

Non-Zero
1 01 18 20 20 15 18.25 18.25
1 03 20 19 18 18 18.75 18.75
1 05 20 20 14 18 18 18
1 06 20 20 20 0 15
1 07 20 17 17 17 17.75 17.75
1 08 20 20 20 20 20 20
1 10 17 19 20 19 18.75 18.75
1 13 20 17 19 15 17.75 17.75
1 14 20 20 15 11 16.5 16.5
1 15 20 16 16 0 13
1 16 20 19 19 19 19.25 19.25
1 17 20 20 20 12 18 18
1 18 15 18 18 0 12.75
1 21 20 20 20 19 19.75 19.75
1 22 20 20 15 16 17.75 17.75
1 23 14 16 14 0 11
1 24 20 20 20 9 17.25 17.25
1 27 20 16 17 13 16.5 16.5
1 28 20 19 19 16 18.5 18.5
1 29 20 20 18 17 18.75 18.75
1 30 19 20 16 18 18.25 18.25
1 32 19 20 19 19 19.25 19.25
1 34 14 16 20 0 12.5
1 35 17 18 19 20 18.5 18.5

290

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Projects Two Through Five, Treatment Group One, Spring 1998

Student
Code

Project
2

Project
3

Project
4

Project
5

Project
2->5

Average

Proiecta#
2->5

Non-Zero
2 01 20 20 20 20 20 20
2 02 20 17 20 11 17 17
2 05 20 19 19 18 19 19
2 06 16 19 20 19 18.5 18.5
2 07 17 17 9 18 15.25 15.25
2 12 20 20 20 18 19.5 19.5
2 14 17 18 18 18 17.75 17.75
2 18 20 12 20 14 16.5 16.5
2 19 20 19 20 20 19.75 19.75
2 20 14 19 20 20 18.25 18.25
2 21 19 18 20 18 18.75 18.75
2 22 20 19 19 19 19.25 19.25
2 23 20 19 19 0 14.5
2 24 20 20 20 19 19.75 19.75
2 25 19 19 20 16 18.5 18.5
2 26 20 19 20 20 19.75 19.75
2 29 20 17 20 15 18 18
2 30 20 19 20 19 19.5 19.5
2 31 19 18 20 19 19 19
2 32 19 20 0 19 14.5
2 33 20 18 20 19 19.25 19.25
2 34 20 19 20 15 18.5 18.5
2 35 20 15 20 18 18.25 18.25
2 37 20 20 20 18 19.5 19.5
2 38 20 20 20 19 19.75 19.75
2 42 20 20 20 20 20 20
2 43 12 18 19 11 15 15
2 45 0 17 19 17 13.25
2 46 20 19 20 16 18.75 18.75
2 47 20 19 20 19 19.5 19.5
2 48 20 16 20 19 18.75 18.75
2 49 14 18 20 20 18 18
2 50 20 18 20 20 19.5 19.5
2 51 19 17 20 20 19 19
2 52 20 19 20 20 19.75 19.75
2 54 16 16 14 9 13.75 13.75
2 57 20 17 19 20 19 19
2 58 15 19 20 19 18.25 18.25
2 59 20 17 20 20 19.25 19.25

291

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Student
Code

Project
2

Project
3

Project
4

Project
5

Project
2->5

Average

Project
2->5

Non-Zero
2 60 20 20 20 19 19.75 19.75
2 61 20 20 19 19 19.5 19.5
2 62 20 19 20 16 18.75 18.75
2 63 20 20 20 19 19.75 19.75
2 64 20 20 18 19 19.25 19.25
2 66 20 0 19 15 13.5
2 68 19 19 19 18 18.75 18.75
2 69 15 17 19 17 17 17
2 70 19 17 20 18 18.5 18.5
2 72 20 18 20 18 19 19
2 73 20 20 20 19 19.75 19.75
2 75 20 19 19 0 14.5
2 76 6 16 15 18 13.75 13.75

Projects Two Through Five, Treatment Group Two, Fall 1998

Student
Code

Project
2

Project
3

Project
4

Project
5

Project
2->5

Average

Project
2->5

Non-Zero
3 01 20 20 19 19 19.5 19.5
3 02 16 19 14 13 15.5 15.5
3 04 20 19 20 14 18.25 18.25
3 05 19 18 14 13 16 16
3 06 16 18 14 14 15.5 15.5
3 07 18 18 18 15 17.25 17.25
3 09 17 0 18 16 12.75
3 10 17 19 20 20 19 19
3 11 19 18 20 19 19 19
3 12 17 20 18 20 18.75 18.75
3 15 20 19 20 19 19.5 19.5
3 16 20 20 20 20 20 20
3 17 20 19 20 18 19.25 19.25
3 19 13 19 16 14 15.5 15.5
3 22 17 20 20 19 19 19
3 23 19 18 20 14 17.75 17.75
3 25 20 19 19 0 14.5
3 27 20 19 19 20 19.5 19.5
3 32 20 18 19 10 16.75 16.75
3 34 16 19 18 20 18.25 18.25
3 35 16 19 20 20 18.75 18.75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Project Nine Scores — The Last and Large Project

Project Nine Scores

Treatment Group
One, Spring 1998

Student
Code Score

Student
Code Score

2 01 31 2 43 17
2 02 21 2 45 15
2 05 35 2 46 19
2 06 19 2 47 38
2 07 21 2 48 38
2 12 34 2 49 36
2 14 20 2 50 27
2 18 27 2 51 32
2 19 34 2 52 38
2 20 23 2 54 34
2 21 36 2 57 39
2 22 37 2 58 0
2 23 36 2 59 37
2 24 27 2 60 17
2 25 34 2 61 35
2 26 34 2 62 37
2 29 38 2 63 39
2 30 35 2 64 19
2 31 28 2 66 27
2 32 14 2 68 20
2 33 33 2 6 9 33
2 34 28 2 70 27
2 35 30 2 72 37
2 37 25 2 73 31
2 38 33 2 75 15
2 42 36 2 76 33

Treatment Group
Two, Fall 1998

Student
Code Score
3 01 33
3 02 37
3 04 35
3 05 26
3 06 25
3 07 22
3 09 26
3 10 38
3 11 39
3 12 38
3 15 38
3 16 37
3 17 35
3 19 26
3 22 26
3 23 29
3 25 22
3 27 34
3 32 22
3 34 31
3 35 27

Control Group
Fall 1997

Student
Code Score
1 01 37
1 03 34
1 05 24
1 06 13
1 07 35
1 08 37
1 10 35
1 13 13
1 14 30
1 15 0
1 16 35
1 17 19
1 18 0
1 21 38
1 22 36
1 23 19
1 24 38
1 27 12
1 28 28
1 29 40
1 30 0
1 32 39
1 34 19
1 35 39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Final Examination Sequential Question Scores

Final Examination Sequential Question Scores, Control Group, Fall 1997

Student Question Question Question Question Question Question Total
Code 1 3* 5 9 10 11 Score
1 01 5 3 3 7 8 9 35
1 03 5 6 0 9 6 9 35
1 05 3 0 3 4 4 5 19
1 06 2 5 2 0 3 3 15
1 07 5 7 4 10 10 12 48
1 08 5 5 6 9 8 5 38
1 10 5 4 0 5 0 5 19
1 13 5 7 8 8 10 10 48
1 14 7 4 7 8 10 8 44
1 15 5 7 4 7 8 7 38
1 16 5 7 7 10 10 11 50
1 17 5 8 0 8 0 5 26
I 18 5 6 7 10 10 2 40
1 21 7 6 8 10 10 12 53
1 22 7 6 3 9 8 10 43
1 23 3 4 2 4 8 5 26
1 24 6 7 2 8 9 11 43
1 27 4 5 1 3 5 0 18
1 28 5 6 8 8 10 9 46
1 29 5 2 4 2 8 3 24
1 30 7 4 5 8 0 0 24
1 32 7 6 8 9 10 2 42
1 34 5 6 0 5 9 5 30
1 35 5 6 7 9 10 12 49

* The question three score includes question three part 3a (2 points), part
3d (2 points), part 3e (4 points) for a total of 8 points.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Final Examination Sequential Question Scores,
Treatment Group One, Spring 1998

Student
Code

Question
1

Question
3*

Question
5

Question
9

Question
10

Question
11

Total
Score

2 01 4 5 0 4 9 8 30
2 02 2 4 0 7 9 8 30
2 05 4 6 2 7 8 10 37
2 06 5 7 4 9 8 4 37
2 07 2 4 2 5 8 5 26
2 12 6 2 4 3 10 11 36
2 14 4 3 1 7 8 8 31
2 18 4 5 3 6 9 6 33
2 19 3 5 2 0 7 3 20
2 20 4 1 0 1 9 2 17
2 21 5 7 0 5 9 9 35
2 22 4 5 8 9 8 7 41
2 23 6 3 0 2 3 1 15
2 24 7 7 6 10 10 9 49
2 25 7 7 4 8 6 5 37
2 26 5 4 3 7 8 5 32
2 29 5 3 2 4 5 5 24
2 30 6 6 2 6 6 6 32
2 31 5 3 4 4 4 8 28
2 32 0 4 0 3 1 2 10
2 33 6 6 1 9 9 10 41
2 34 4 2 7 1 7 3 24
2 35 2 4 2 4 8 5 25
2 37 5 5 2 10 8 9 39
2 38 4 4 8 7 6 9 38
2 42 4 7 3 4 5 5 28
2 43 3 6 0 4 5 3 21
2 45 4 4 2 0 8 8 26
2 46 4 0 2 9 9 0 24
2 47 4 3 5 10 9 8 39
2 48 6 6 6 9 6 8 41
2 49 6 2 4 9 8 5 34
2 50 4 4 8 9 7 9 41
2 51 5 6 6 8 10 5 40
2 52 6 5 8 9 7 5 40
2 54 6 2 2 5 7 0 22
2 57 4 6 2 6 7 10 35
2 58 6 2 4 4 0 4 20

295

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Student
Code

Question
1

Question
3*

Question
5

Question
9

Question
10

Question
11

Total
Score

2 59 6 5 7 3 8 8 37
2 60 3 1 0 0 8 2 14
2 61 7 7 3 10 9 12 48
2 62 5 5 6 10 6 9 41
2 63 3 6 2 6 9 6 32
2 64 7 7 7 10 10 10 51
2 66 2 7 0 2 7 2 20
2 68 5 3 0 7 8 5 28
2 69 6 3 6 8 0 11 34
2 70 5 2 1 I 4 12 25
2 72 3 5 6 8 2 3 27
2 73 4 7 7 7 0 9 34
2 75 5 6 4 7 8 0 30
2 76 5 5 2 5 7 10 34

* The question three score includes question three part 3a (2 points), part
3c (2 points), part 3d (4 points) for a total of 8 points.

296

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Final Examination Sequential Question Scores,
Treatment Group Two, Fall 1998

Student
Code

Question
1

Question
3*

Question
5

Question
9

Question
10

Question
11

Total
Score

3 01 7 5 8 8 10 12 50
3 02 4 3 0 2 8 4 21
3 04 5 6 5 6 8 6 36
3 05 3 2 3 6 0 0 14
3 06 2 0 0 4 5 2 13
3 07 5 7 8 4 8 11 43
3 09 5 7 2 6 9 12 41
3 10 5 6 7 9 10 9 46
3 11 4 5 0 6 8 11 34
3 12 7 7 8 10 10 10 52
3 15 7 6 4 7 9 8 41
3 16 6 6 7 9 10 12 50
3 17 5 5 5 6 10 7 38
3 19 5 8 6 4 9 7 39
3 22 7 5 5 7 8 8 40
3 23 5 7 0 4 9 4 29
3 25 5 2 6 0 9 6 28
3 27 6 8 6 9 10 12 51
3 32 7 8 7 9 9 8 48
3 34 5 4 4 7 8 3 31
3 35 3 5 2 8 9 4 31

* The question three score includes question three part 3 a (2 points), part
3c (2 points), part 3d (4 points) for a total of 8 points.

297

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Final Examination Concurrency Question Scores

Final Examination Concurrency Question Scores,
Treatment Group One, Spring 1998

Student Qu. Qu. Tot. Qu. Qu. Qu. Tot. Qu. Qu. Qu. Qu. Tot. Total
Code 2a 2b 2 4a 4b 4c 4 7 8a 8b 8c 8 Score
2_01 4 4 8 2 0 0 2 2 0 0 0 0 12
2_02 5 1 6 0 2 0 2 3 0 0 0 0 11
2_05 4 2 6 4 4 0 8 6 1 2 0 3 23
2_06 2 2 4 2 0 0 2 4 2 2 0 4 14
2_07 0 1 1 3 2 0 5 3 2 2 1 5 14
2_12 2 5 7 2 2 2 6 4 2 2 0 4 21
2_14 3 2 5 2 0 0 2 0 0 0 0 0 7
2_18 2 5 7 2 0 0 2 0 2 2 0 4 13
2_19 2 4 6 0 0 2 2 3 2 2 1 5 16
2_20 3 1 4 0 0 0 0 0 0 0 0 0 4
2_21 4 2 6 5 4 0 9 4 1 2 1 4 23
2_22 4 5 9 0 0 2 2 4 2 2 2 6 21
2_23 2 3 5 0 0 0 0 2 1 0 0 1 8
2_24 3 5 8 6 0 2 8 5 2 2 5 9 30
2_25 5 3 8 5 0 0 5 2 2 2 0 4 19
2_26 4 2 6 2 0 2 4 5 0 2 0 2 17
2_29 5 3 8 0 0 0 0 0 0 0 0 0 8
2_30 3 1 4 2 2 0 4 4 0 2 0 2 14
2_31 4 3 7 0 I 0 I 4 0 0 0 0 12
2_32 0 1 1 5 0 0 5 2 1 0 1 2 10
2_33 4 5 9 4 0 0 4 9 2 2 3 7 29
2_34 4 3 7 0 0 0 0 1 0 2 1 3 11
2_35 3 2 5 2 4 0 6 2 0 1 1 2 15
2_37 3 5 8 0 0 2 2 2 2 2 0 4 16
2_38 5 5 10 0 2 2 4 9 2 2 2 6 29
2_42 2 5 7 5 0 0 5 4 2 1 0 3 19
2_43 3 1 4 2 0 0 2 I 0 0 1 1 8
2_45 5 2 7 0 0 0 0 0 0 0 0 0 7
2_46 0 1 1 3 0 2 5 0 0 0 0 0 6
2_47 5 5 10 3 2 2 7 9 2 2 2 6 32
2_48 2 2 4 2 0 2 4 3 2 2 0 4 15
2_49 3 2 5 0 0 0 0 3 1 0 0 1 9
2_50 3 2 5 0 0 0 0 0 0 0 0 0 5
2_51 2 5 7 1 0 0 1 1 2 0 1 3 12
2_52 2 2 4 0 0 0 0 3 1 2 0 3 10
2_54 5 5 10 3 0 2 5 2 0 2 0 2 19
2_57 2 3 5 4 0 2 6 5 2 2 1 5 21
2_58 0 0 0 2 0 0 2 3 0 0 0 0 5

298

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Student Qu. Qu. Tot. Qu. Qu. Qu. Tot. Qu. Qu. Qu. Qu. Tot. Total
Code 2a 2b 2 4a 4b 4c 4 7 8a 8b 8c 8 Score
2_59 5 3 8 0 0 0 0 4 1 2 0 3 15
2_60 2 2 4 0 2 0 2 1 0 0 0 0 7
2_61 5 5 10 6 2 2 10 7 0 2 0 2 29
2_62 3 4 7 3 0 2 5 1 2 2 0 4 17
2_63 3 4 7 1 0 2 3 3 2 2 0 4 17
2_64 5 5 10 6 2 2 10 9 1 0 1 2 31
2_66 2 0 2 1 0 0 1 1 1 0 0 1 5
2_68 3 2 5 3 0 0 3 2 2 2 I 5 15
2_69 3 1 4 1 0 0 1 3 2 0 0 2 10
2_70 2 3 5 3 0 0 3 0 0 0 0 0 8
2_72 3 4 7 0 0 2 2 4 1 0 1 2 15
2_73 3 5 8 0 0 0 0 4 1 2 0 3 15
2_75 4 5 9 2 0 2 4 0 0 0 0 0 13
2_76 5 2 7 2 0 2 4 2 1 2 3 6 19

299

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Final Examination Concurrency Question Scores,
Treatment Group Two, Fall 1998

Student Qu. Qu. Tot. Qu. Qu. Qu. Tot. Qu. Qu. Qu. Qu. Tot. Total
Code 2a 2b 2 4a 4b 4c 4 7 8a 8b 8c 8 Score
3 01 3 5 8 4 0 1 5 6 JL 2 4 8 27
3 02 3 0 3 0 0 2 2 2 0 1 2 3 10
3 04 3 5 8 1 4 0 5 3 0 0 0 0 16
3 05 3 5 8 1 0 1 2 1 2 0 0 2 13
3 06 2 2 4 0 0 0 0 3 0 0 0 0 7
3 07 4 4 8 1 0 0 1 5 2 2 I 5 19
3 09 3 4 7 2 0 2 4 2 2 2 3 7 20
3 10 5 5 10 1 0 2 3 1 2 2 0 4 18
3 11 3 2 5 0 4 1 5 2 2 2 2 6 18
3 12 5 5 10 2 0 2 4 7 2 2 4 8 29
3 15 3 5 8 2 4 2 8 3 2 0 2 4 23
3 16 4 4 8 4 4 2 10 2 2 2 3 7 27
3 17 5 5 10 2 0 2 4 3 2 2 0 4 21
3 19 5 5 10 0 0 2 2 3 0 0 0 0 15
3 22 3 5 8 0 0 2 2 1 2 2 0 4 15
3 23 0 0 0 5 0 1 6 0 1 0 0 1 7
3 25 3 5 8 0 0 2 2 1 2 2 1 5 16
3 27 4 5 9 0 0 0 0 1 2 2 4 8 18
3 32 4 4 8 6 0 2 8 4 2 2 2 6 26
3 34 3 5 8 2 2 0 4 3 2 2 2 6 21
3 35 3 2 5 0 0 2 2 0 0 0 0 0 7

300

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

APPENDIX K. COMPILATION DATA

This section of the document presents the compilation data used in the

experiment The organization of this appendix is by group. The following information

provided for each group (both control and treatment).

1. Ratio, Project 9 Compilations / Project 2 Through 5 Compilations

2. Distinct Error Messages, Project 9

3. Total Errors / Distinct Errors, Project 9

The student codes for all experiment subjects are included in the tables

301

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Compilation and Error Data, Control Group, Fall 1997

Student
Code

Projects
2->5

Compiles
(PC25)

Project 9
Compiles

(PC9)

Ratio
(PC9 /
PC25)

Project 9
Distinct

Errors &
Warnings

Project 9
Total

Errors &
Warnings

Ratio of
Total/

Distinct
I 01 548 127 0.231752 55 375 6.8182
1 03 246 110 0.447154 33 220 6.6667
I 05 60 47 0.783333 25 96 3.8400
I 06 **
1_07 261 110 0.421456 29 175 6.0345
I 08 265 150 0.566038 37 441 11.9189
1 10 212 134 0.632075 29 221 7.6207
I_13 180 32 0.177778 11 * 60* 5.4545
1 14 144 226 1.569444 49 502 10.2449
I 15 **
1 16 85 199 2.341176 51 318 6.2353
1 17 73 83 1.136986 56 351 6.2679
1 18 **
l_21 62 88 1.419355 23 160 6.9565
1 22 283 205 0.724382 52 548 10.5385
1 23 **
1 24 113 173 1.530973 35 253 7.2286
1 27 163 45 0.276074 18 69 3.8333
1 28 101 112 1.108911 65 731 11.2462
1 29 161 29 0.180124 17 49 2.8824
1 30 **
1 32 150 187 1.246667 54 217 4.0185
1 34 1
1 35 82 30 0.365854 3 * 11 * 3.6667

* Data presented yet not used
** Insufficient project homework recorded

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Compilation and E rror Data, Treatment Group One, Spring 1998

Student
Code

Projects
2 -> 5

Compiles
(PC25)

Project 9
Compiles

(PC9)

Ratio
(PC9/
PC25)

Project 9
Distinct

Errors &
Warnings

Project 9
Total

Errors &
Warnings

Ratio of
Total/

Distinct
2 01 264 146 1.808219 60 398 6.6333
2_02 95 217 0.437788 39 424 10.8718
2 05 136 276 0.492754 48 324 6.7500
2 06 86 242 0.355372 38 306 8.0526
2 07 148 208 0.711538 57 266 4.6667
2 12 **
2 14 175 230 0.76087 38 350 9.2105
2 18 157 107 1.46729 44 386 8.7727
2 19 160 210 0.761905 47 340 7.2340
2 20 273 169 1.615385 61 408 6.6885
2 21 192 197 0.974619 50 406 8.1200
2 22 435 594 0.732323 76 1137 14.9605
2 23 10
2_24 206 110 1.872727 66 333 5.0455
2 25 115 226 0.50885 47 208 4.4255
2 26 241 115 2.095652 57 339 5.9474
2 29 175 238 0.735294 58 530 9.1379
2 30 193 142 1.359155 65 438 6.7385
2 31 85 152 0.559211 46 178 3.8696
2 32 *#
2 33 ** 55 334 6.0727
2 34 227 190 1.194737 44 414 9.4091
2 35 322 409 0.787286 83 925 11.1446
2 37 31 77 0.402597 18 64 3.5556
2 38 237 208 1.139423 61 717 11.7541
2 42 465 225 2.066667 58 627 10.8103
2 43 **
2 45 78 182 0.428571 32 193 6.0313
2 46 115 235 0.489362 28 247 8.8214
2 47 365 218 1.674312 73 534 7.3151
2_48 131 104 1.259615 21 89 42381
2 49 300 177 1.694915 54 674 12.4815
2 50 131 190 0.689474 24 71 2.9583
2 51 82 109 0.752294 34 166 4.8824
2 52 422 294 1.435374 64 1001 15.6406
2_54 73 154 0.474026 44 248 5.6364
2_57 127 168 0.755952 35 162 4.6286

303

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Student
Code

Projects
2 ->5

Compiles
(PC25)

Project 9
Compiles

(PC9)

Ratio
(PC9/
PC25)

Project 9
Distinct

Errors &
Warnings

Project 9
Total

Errors &
Warnings

Ratio of
T otal/
Distinct

2 58 **
2 59 364 302 1.205298 75 1221 16.2800
2 60 58 150 0.386667 32 407 12.7188
2 61 200 136 1.470588 64 388 6.0625
2 62 156 76 2.052632 31 172 5.5484
2 63 191 181 1.055249 47 251 5.3404
2 64 124 180 0.688889 40 185 4.6250
2 66 **
2 68 **
2 69 78 186 0.419355 10* 27* 2.7000*
2 70 16 100 0.16
2 72 248 205 1.209756 56 397 7.0893
2 73 95 202 0.470297 38 198 5.2105
2 75 44 32 90 2.8125
2 76 190 249 0.763052 56 317 5.6607

* Data presented yet not used
** Insufficient project homework recorded

304

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Compilation and E rror Data, Treatment Group Two, Fall 1998

Student
Code

Projects
2 -> 5

Compiles
(PC25)

Project 9
Compiles

(PC9)

Ratio
(PC9/
PC25)

Project 9
Distinct

Errors &
Warnings

Project 9
Total

Errors &
Warnings

Ratio of
Total/
Distinct

3001 227 132 1.719697 45 447 9.9333
3002 350 132 2.651515 89 2142 24.0674
3004 414 180 2.3 70 806 11.5143
3005 115 254 0.452756 29 179 6.1724
3006 67 89 0.752809 18 504 28.0000
3007 172 160 1.075 51 260 5.0980
3009 138 185 0.745946 62 511 8.2419
3010 88 136 0.647059 37 150 4.0541
3011 142 176 0.806818 55 524 9.5273
3012 324 112 2.892857 82 695 8.4756
3015 110 204 0.539216 42 192 4.5714
3016 112 137 0.817518 40 245 6.1250
3017 **
3019 79 123 0.642276 48 311 6.4792
3022 52 94 0.553191 39 118 3.0256

3023 83 173 0.479769 34 202 5.9412

3025 **
3027 282 185 1.524324 62 593 9.5645

3032 **
3034 120 252 0.47619 24 266 11.0833
3035 60 317 0.189274 17 57 3.3529

** Insufficient project homework recorded

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

APPENDIX L. CONCURRENCY PROGRAMMING (NON-HYPOTHESIS)

PROJECT SCORES

The tables below show the unadjusted concurrent programming scores for three

projects not included in hypothesis statistics. These scores are for program syntax,

correctness, and completeness. The two tables present only scores for students who did

the concurrent parts of the projects. The term unadjusted means that late penalties are not

included in the scores. The scores are on a 10 point scale. The interesting aspect of the

averages, to the investigator, is that the averages are increasing over the three projects.

The second table shows the individual student scores.

Treatment
Sprinj

Group One
g 1998

Treatment Group Two
Fall 1998

Project
6

Project
7

Project
8

Project
6

Project
7

Project
8

Average 8.276596 8.742857 9.695652 6.578947 8.142857 8.8
Median 10 10 10 6 8.5 9.5

Treatment
Sprinj

Group One
g 1998

Treatment Group Two
Fall 1998

Student
Code

Project
6

Project
7

Project
8

Student
Code

Project
6

Project
7

Project
8

2_01 10 10 9 3 01 5 9.5
2 02 8 10 3 02 8 10 10
2 05 10 10 3 04 9 10
2 06 5 8 9.5 3 05 7 10 9.5
2 07 4 10 3 06 5 7 9
2 12 10 3 07 9.5
2 14 5 7 10 3 09 8 4 9.5
2 18 8 5 7 3_10 5 10 10
2 19 8 10 10 3 11 5 10 10
2 20 10 10 9.5 3 12 9 10 4.5
2 21 10 10 10 3 15 6 10 10
2 22 10 9 10 3 16 10 8 7
2 23 8 10 3 17 5
2 24 10 10 3_19 2 5 10
2 25 10 10 10 3 22 7 7
2 26 10 9.5 3 23 5 5 7
2 29 10 8 10 3 25 6 10

306

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Treatment
Sprin

Group One
*1998

Treatment Group Two
FaU 1998

Student
Code

Project
6

Project
7

Project
8

Student
Code

Project
6

Project
7

Project
8

2 30 10 10 3 27 9 9 10
2 31 10 9.5 3 32 4
2 32 8 7 8.5 3 34 8 8 9.5
2 33 10 10 10 3 35 6 8 10
2 34 10 10 9
2 35 6 7 10
2 37 3 10
2 38 10 10 10
2 42 10 10 10
2 43
2 45 6 6 10
2 46 10 10
2 47 10 10 10
2 48 8 10
2 49 10 10 8.5
2 50 8 6
2 51 8 10
2 52 10 10
2 54 4 8
2 57 10 8 10
2 58 6
2 59 8 10 9.5
2 60 10 10
2 61 8 7 10
2 62 3 7 10
2 63 10 10 10
2 64 10 9 10
2 66 9.5
2 68 10
2 69 8 4 10
2 70 4 8 10
2 72 10 10 10
2 73 8 10 10
2 75 10 10 10
2 76 7 9

307

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

APPENDIX M. STATISTICAL TESTS

There are three statistical tests used in this experiment to examine the normality

of a distribution; they are as follows:

• Skewness Normality of Residuals

• Kurtosis Normality of Residuals

• Omnibus Normality of Residuals

A skewness test measures the direction and degree of asymmetry of a distribution. The

result of a skewness test means the following:

• Result < 0, the distribution is long-tailed to the left [Hintze, p. 93]

• Result = 0, the distribution is symmetric

• Result > 0, the distribution is long-tailed to the right

A residual is defined as the vertical deviation of each point from a regression line. The

regression line for a normal distribution is straight line with a slope of 1.0. The residuals

may though of as vertical lines that connect each observation to the regression line.

Skewness results are reported as shown in the table below. The test value is the test

statistic. The probability is a p-value for a two-tailed test for normality [Hintze, p. 218]

Assumption
Test

Value Probability
Decision

(0.05)
Skewness Normality of Residuals -2.5731 0.010078 Reject

A kurtosis test measures the heaviness of the tails of a distribution. A normal distribution

has a skewness statistic equal 0.0 and a kurtosis statistic of 3.0. The result of a kurtosis

test means the following:

• Result < 3, a unimodal distribution with lighter tails

• Result > 3, a unimodal distribution with heavier tails

For example, unimodal distributions with lighter tails tend to have a broader peak than

the classic normal distribution. Kurtosis results are reported as shown in the table below.

308

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Assumption
Test

Value Probability
Decision

(0.05)
Kurtosis Normality of Residuals -0.7914 0.428726 Accept

The test value is the test statistic. The probability is a p-value for a two-tailed test for

normality [Hintze, p. 218]. The omnibus test combines the skewness and kurtosis tests

into a single statistic of the overall normality of a distribution. The omnibus test is

considered a better statistic because it combines the skewness and kurtosis test. Omnibus

results are reported as shown in the table below.

Assumption
Test

Value Probability
Decision

(0.05)
Omnibus Normality of Residuals 7.2473 0.026685 Reject

There are problems in the application of the normality tests:

• With a sample size < 25, the power of these normality test is questionable

• With a sample size < 50, only extreme examples of non-normality can be

detected [Hintze, p.80]

• With a sample size < 100, there may be not be enough evidence in your data

to reject normality

In this experiment, the data group sizes are as follows:

• 24 for the Fall 1997 class, control group

• 52 for the Spring 1998 class, treatment group one

• 21 for the Fall 1998 class, treatment group two

The data group sizes are large enough in many cases to disprove normality. In all cases

the data group sizes are too small to prove normality. Therefore, although the normality

tests are run, the statistical tests chosen are always non-parametric.

Some of the statistical tests used in this experiment assume that the data groups

have equal variances. The equal-variance (modified Levene) test is an excellent test for

the equality of variances. The test is one of the most robust and powerful tests for

equality of variance [Hintze, p.219]. This test can be important when the variance of a

309

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

smaller group (like the Fall 1997 class) is larger than the variance of a larger group (like

the Spring 1998 class). The test results are reported as shown in the table below.

Assumption
Test

Value Probability
Decision

(0.05)
Modified-Levene Equal-Variance
Test 1.1602 0.317881 Accept

The test value is the result of a one-way analysis of variance of the absolute values of the

median differences, and the corresponding p-value is shown in the probability column.

Probabilities of 0.3 and above are common in this experiment, and these probabilities are

more than sufficient to justify using statistical tests with equality of variance

assumptions.

In this experiment there are two statistical test used that include the assumption of

equality of variance:

• Mann-Whitney U Test

• Kruskal-Wallis One-Way ANOVA on Ranks Test

The Mann-Whitney U Test is the non-parametric test used instead of the equal-variance

T-test; this test is used in comparing two groups. The Mann-Whitney U Test is based on

the following assumptions:

• The data groups have equal variances

• The data groups are independent populations

• The data is ordinal -- the data is order strictly by magnitude

• The data groups are random samples of their respective populations

• The data is continuous — the continuous data assumption is met with five or

more unique values

The test results are reported as shown in the table below. Two alternative hypotheses are

presented. The "D(l) o D(2)" hypothesis is the null hypothesis (the probability that

there is no significant difference between the two groups). The second hypothesis shown

is the difference hypothesis with the highest probability (in this case distribution one is

probably less than distribution two). The test value shown is statistic value.

310

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Alternative
Hypothesis Test Value Probability

Decision
(0.05)

D (l)o D (2) 5.1836 0.000000 Reject Ho

D(l) <D(2) 5.1902 1.000000 Accept Ho

The Kruskal-Wallis One-Way ANOVA on Ranks test is the non-parametric test used

instead of the One-Way ANOVA test; this test is used in comparing three or more

groups. The Kruskal-Wallis One-Way ANOVA on Ranks test is based on the following

assumptions:

• The data groups have equal variances

• The data groups are independent populations

• The data is ordinal - the data is order strictly by magnitude

• The data groups are random samples of their respective populations

• The data is continuous - the continuous data assumption is met with five or

more unique values

The number of degrees of freedom associated with the Kruskal-Wallis One-Way

ANOVA on Ranks test is one less than the number of groups. In this experiment, three

groups are compared; thus, the number of degrees of freedom is two. The test results are

reported as shown in the table below. The Kruskal-Wallis One-Way ANOVA on Ranks

test is slightly sensitive to the presence of tie observations in a single sample. An example

of tie observations is two or more students with the score of 75 on a test. Therefore, the

"corrected for ties" statistic value is reported. Ties typical affect the 3rd or 4th decimal

position of the probability.

Method
Chi-Square

(H) Probability
Decision

(0.05)
Corrected for Ties 1.961352 0.375058 Accept Ho

311

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

In the event that the data groups do not pass an equality of variance test

(Modified-Levene), the non-parametric Kolmogorov-Smimov test is used. This test is

used to detect a significant difference in two samples or distributions. The Kolmogorov-

Smimov test is based on the following assumptions:

• The data groups are independent populations

• The data is ordinal -- the data is order strictly by magnitude

• The data groups are random samples of their respective populations

• The data is continuous -- the continuous data assumption is met with five or

more unique values

The test results are reported as shown in the table below. The test results indicate that the

two distributions are not the same.

Hypothesis
Criterion

Value Probability
Decision

(0.05)
D(S) o D(2) 0.303922 0.0112 Reject Ho

The correlations are computed using the Spearman's rho (row-wise deletion)

technique. The Spearman's rho correlation coefficient measures the monotonic

association between two variables in terms of ranks. The Spearman's rho is a non-

parametric technique. The technique works well with data that has the following

characteristics:

• Non-normal

• Non-linear relationships

• Unequal variance between groups compared

312

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

A Spearman's rho coefficient of 0.00 indicates zero correlation between the variables. A

coefficient of 0.95 indicates a very high positive correlation between the variables. A

coefficient of -0.95 indicates a very high negative correlation between the variables.

Correlation coefficients between -0.20 and 0.20 indicate low correlations (either negative

or positive). The Spearman's rho correlation coefficient is computed by using the

Pearson correlation technique applied to ranks of data.

313

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

APPENDIX N. INTRODUCTORY ADA CONCURRENCY SUMMARY

The Introductory Ada Concurrency Summary presented on the following pages

in Web page format. The page format for this dissertation is different than the original

Web page format of the text. Therefore, the appearance of the text is different when

viewed using a browser.

314

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Computer Science 1

Introductory Ada Concurrency Summary
Tasks — Just The Basics

The purpose of this document is to provide just enough Ada Concurrency
programming information for an entry level student to succeed in a first programming
class (Computer Science CS1). As in any introductory programming class, some topics
are omitted. This document is based on a student having several weeks (about eight) of
sequential programming experience.

The reserved words are in upper case (like TASK) for easy recognition.

TASK Index

TASK Introduction
TASK Basic Structure
ENTRY And ACCEPT Statements
DELAY
SELECTand ACCEPT
Declaring TASKs
Task State Model
Message Passing. When Tasks Rendezvous
Task Parameter Modes
Shared Memory
Semaphores
Terms And Definitions

TASKS

■TASK Introduction

Tasks are the basic unit of concurrency in Ada. Tasks are declared and have TASK
BODYs. Tasks begin once they are created (like when the program begins). Tasks are not
called, unlike FUNCTIONS and PROCEDURES. Tasks can communicate with other
tasks:

• Tasks can pass messages, called message passing

• Tasks can share variables, called shared memory

315

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Both programs and tasks are scheduled. Unlike programs, the effects of task scheduling
are often visible. Thus, this narrative provides a discussion on the states (scheduling
states) of a task. Tasks can have one or more "entry" points. Explicitly named "entry"
points are declared in the task declaration. See the ENTRY and ACCEPT Statements
narrative below.

ATT ASK Basic Structure

The following program declares one task type named "task_intro". Three individual tasks
named Task_l, Task_2, and Task_3 are declared to be of type "task_intro". The three
tasks start running when the program begins execution.

WITH Ada.Text_IO; — Include Text_IO Library
WITH Ada.Integer_Text_IO; — Include Integer Text_IO Library
PROCEDURE task_demo_OI IS

Task Type Specification
TASK TYPE intro_task (message : Integer) ;
TASK BODY intro_task IS — Task Body Definition
BEGIN

FOR count IN 1..5 LOOP
Ada.Text_IO.put (Item = "Display from Task ");
Ada.Integer_Text_IO.put (Item = message, Width = 1);
Ada.Text_IO.new_line;

END LOOP;
END intro_task;

Unlike procedures, these tasks are not called.
These three tasks are activated once the program begins.

Task_l : intro_task (message = 1) ;
Task_2 : intro_task (message = 2);
Task_3 : intro_task (message = 3);

BEGIN
NULL;

END task_demo_01;
The output of above program is shown below. Once the program begins execution, each
of the tasks is scheduled and starts executing. The order of task execution is not the same
as the order of task declaration.

Display from Task 3
Display from Task 3
Display from Task 3
Display from Task 3
Display from Task 3
Display from Task 2
Display from Task 2
Display from Task 2
Display from Task 2
Display from Task 2
Display from Task 1
Display from Task 1
Display from Task 1
Display from Task 1
Display from Task 1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

■ENTRY And ACCEPT Statements

The ENTRY statement declares an entry point into a task. The ACCEPT statement marks
(or places) an entry point into a task. More complex ENTRY and ACCEPT statements
are explained later in the document (see Message Passing).

WITH Ada.Text_IO; — Include Text_IO Library
WITH Ada.Integer_Text_IO; — Include Integer Text_IO Library
PROCEDURE task_demo_02 IS

— Task Type Specification
TASK TYPE intro_task (message : Integer) IS

ENTRY s t a r t ; — Entry Point Into The Task
END intro_task;
TASK BODY intro_task IS — Task Body Definition
BEGIN

ACCEPT s t a r t ; — Entry Point Into The Task
FOR count IN 1..5 LOOP

Ada.Text_IO.put (Item = "Display from Task ");
Ada.Integer_Text_IO.put (Item = message, Width = 1);
Ada.Text_IO.new_line;

END LOOP;
END intro_task;
— Unlike procedures, these tasks are not called.
— These three tasks are activated once the program begins.
Task_l : intro_task (message = 1);
Task_2 : intro_task (message = 2);
Task_3 : intro_task (message = 3);

BEGIN
T a s k _ l . s t a r t ;
T a s k _ 2 . s t a r t ;
T a s k _ 3 . s t a r t ;

END task_demo_02;
The output of above program is shown below. Once the program begins execution, each
of the tasks is scheduled and starts executing. However, the first statement after the
BEGIN is the ACCEPT statement. Each task waits for a message from the main program,
a "start message". Once the "start" message is received ("accepted"), the task proceeds.
The order of task completion follows the order of the "Task.start" statements in the
program.

Display from Task 1
Display from Task 1
Display from Task 1
Display from Task 1
Display from Task 1
Display from Task 2
Display from Task 2
Display from Task 2
Display from Task 2
Display from Task 2
Display from Task 3
Display from Task 3
Display from Task 3

317

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Display from Task 3
Display from Task 3

■DELAY Statement

Execution of a program or task is delayed by at least the delay time specified in a
DELAY statement.

DELAY expression; — or
DELAY 0.0; — use of a literal

The DELAY statement causes a task to be rescheduled. This is shown in the example
below.

WITH Ada.Text_IO;
WITH Ada.Integer_Text_IO;
PROCEDURE task_demo_03 IS

TASK TYPE intro_task
ENTRY start;

END intro_task;
TASK BODY intro_task IS — Task Body Definition
BEGIN

ACCEPT start; — Entry Point Into The Task
FOR count IN 1..5 LOOP

Ada.Text_IO.put (Item = "Display from Task ");
Ada.Integer_Text_IO.put (Item = message, Width = 1);
Ada.Text_IO.new_line;
delay 0.0; — Task is delayed and rescheduled

END LOOP;
END intro_task;
— Unlike procedures, these tasks are not called.
— These three tasks are activated once the program begins.
Task_l : intro_task (message = 1);
Task_2 : intro_task (message = 2);
Task_3 : intro_task (message =3);

BEGIN
Task_l.start;
Task_2.start;
Task_3.start;

END task_demo_03;
The output of above program is shown below. Once the program begins execution, each
of the tasks is scheduled and starts executing. However, due to the DELAY statement, the
tasks are now delayed and rescheduled at the end of each pass through the FOR LOOP.
Each task periodically "goes to sleep" and waits to be rescheduled. The Ada task
scheduler controls the order in which the tasks take turns executing. Coding tasks using a
DELAY statement such that the tasks appear to be taking turns executing is called
cooperative multitasking.

Display from Task 1
Display from Task 1

318

Include Text_IO Library
Include Integer Text_IO Library

— Task Type Specification
(message : Integer) IS

Entry Point Into The Task

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Display from Task 2
Display from Task 1
Display from Task 2
Display from Task 1
Display from Task 3
Display from Task 2
Display from Task 1
Display from Task 3
Display from Task 2
Display from Task 3
Display from Task 2
Display from Task 3
Display from Task 3

■SELECT and ACCEPT

SELECT and ACCEPT statements together mark entry points for messages into a task
that are alternatives (or optional). In the example below, the "ACCEPT stop" entry point
into the task is bypassed if no other task has sent a "stop" message.

WITH Ada.Text_IO; — Include Text_IO Library
WITH Ada.Integer_Text_IO; — Include Integer Text_IO Library
PROCEDURE task_demo_05 IS

— Task Type Specification
TASK TYPE intro_task (message : Integer) IS

ENTRY start;
ENTRY stop;

END intro_task;
TASK BODY intro_task IS
BEGIN

ACCEPT start;
LOOP

Ada.Text_IO.put (Item =
Ada.Integer_Text_IO.put
Ada.Text_IO.new_line;
DELAY 0.0;
SELECT

ACCEPT s t o p ; —
E X IT ;

ELSE
NULL;

END SELECT;
END LOOP;

END intro_task;
— Unlike procedures, these tasks are not called.
— These three tasks are activated once the program begins.
Task_l : intro_task (message = 1) ;
Task_2 : intro_task (message = 2);
Task_3 : intro_task (message = 3);

BEGIN
Task_l.start; Task_2.start; Task_3 .start;
delay 0.05;
Task_l.stop; Task_2.stop; Task_3.stop;

END task demo 05;

319

Entry Point Into The Task
Entry Point Into The Task

Task Body Definition
Entry Point Into The Task
"Display from Task ");
(Item = message, Width = 1);
Task Is Delayed and Rescheduled
Entry Point Into The Task
Exit The LOOP
Do Nothing In The Select

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

The output o f the above program is shown below. In a SELECT block (SELECT... END
SELECT;), if there are no message waiting for an ACCEPT, the ELSE condition is
executed. The "SELECT... ELSE NULL; END SELECT;" logic allows an infinite LOOP
to "check-in" for messages. If a message is waiting, the statements following the
ACCEPT are executed. If no message is waiting, the LOOP is repeated. Coding tasks
using SELECT blocks such that the task continues to execute while waiting for a message
is called busy waiting.

Display from Task 1
Display from Task 1
Display from Task 2
Display from Task 1
Display from Task 2
Display from Task 1
Display from Task 3
Display from Task 2

Display from Task 1
Display from Task 3
Display from Task 2
Display from Task 1
Display from Task 3
Display from Task 2
Display from Task 3
Display from Task 2
Display from Task 3
Display from Task 3

In addition to busy waiting, the Ada language also supports the concept of selective
waiting. The SELECT block can contain many ACCEPT statements, separated by the
reserve word "OR". Messages sent to the receiving task are processed in the select block
in the order they are received. The following program shows both the "OR" and "ELSE"
within a single SELECT block. The program models a toy that waits for a command at
one-half second intervals (once started). As in the previous example, if no message is
waiting, the LOOP is repeated (see ELSE statement).

WITH Ada.Text_IO;
WITH Ada.Integer_Text_IO;
PROCEDURE task_demo_08 IS

TASK TYPE intro_task IS
ENTRY start;
ENTRY turn_left;
ENTRY turn_right;
ENTRY stop;

END intro task;

— Include Text_IO Library
— Include Integer Text_IO Library
— Task Type Specification
— Entry Points Into The Task

320

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

TASK BODY intro_task IS — Task Body Definition
BEGIN

ACCEPT start; — Entry Point Into The Task
Ada.Text_IO.put_line (Item = "Toy is running");
LOOP

SELECT
ACCEPT t u x n _ l e f t ;

Ada.Text_IO.put_line
OR
ACCEPT t u m _ r i g h t ; —

Ada.Text_IO.put_line
OR
ACCEPT s t o p ;

Ada.Text_IO.put_line
EXIT;

ELSE
Ada.Text_IO.put_line

END SELECT;
DELAY 0.5;

END LOOP;
END intro_task;
— Unlike procedures, tasks are not called.
— This task are activated once the program begins.
Task_l : intro_task;

BEGIN
Task_l.start; DELAY 2.0;
Task_l.turn_left; DELAY 2.0;
Task_l.turn_right; DELAY 2.0;
Task_l.stop;

END task_demo_08;
The output of the above program is shown below.

Toy is running
Moving straight
Moving straight
Moving straight
Moving straight
Turning left
Moving straight
Moving straight
Moving straight
Turning right
Moving straight
Moving straight
Moving straight
Toy has stopped

■Declaring Tasks

There are many ways to define and refer to tasks. Three are shown in the following table.
In the first example, titled "TASK Only", the task is declared without using a TASK
TYPE declaration. This works when declaring only a single instance of the task.

321

Entry Point Into The Task
(Item = "Turning left");
Entry Point Into The Task
(Item = "Turning right");
Entry Point Into The Task
(Item = "Toy has stopped");
Exit The LOOP
(Item = "Moving straight");

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

In the second example, titled "TASK TYPE", a task type is declared first and then
followed by the declaration of the individual tasks. The second example works for
declaring multiple copies of the same task type.

In the third example, titled "TASK TYPE & DECLARE BLOCK", a declare block is
used to allow for tasks to be declared within the procedural part of the program (after the
BEGIN). The logic within the program can determine whether a task should be declared
and how often a new task should be declared.

Example Task Declaration Task Invocation

TASK Only

TASK sample 1 IS
ENTRY go;

END sample_l;
TASK BODY sample_l IS

END sample 1;

sample_l.go;

TASK TYPE

TASK TYPE sample_2 IS
ENTRY go;

END sample_l;
TASK BODY sample_2 IS

END sample_2;
Task_2a : sample_2;
Task 2b : sample 2;

Task_2a.go;
Task_2b.go;

TASK TYPE &
DECLARE BLOCK

TASK TYPE sample_3 IS
ENTRY go;

END sample_3;
TASK BODY sample_3 IS

END sample 3;

DECLARE
Task_3a : sample_3;
Task 3b : sample 3;

BEGIN
Task_3a.go;
Task 3b.go;

END;

■Task State Model

Tasks are not always executing; they have several different states. The diagram below
shows a simplified model of task states. The states are in bold print. The event or
condition to occur causing a change of state is shown between the states. For example,
when a running task performs a delay, the task is blocked (or waits) until the specified
time has passed. Once the delay specified time has passed, the task is now ready to be
rescheduled to execute.

322

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Ready <---
i

— +
A

I

Task |
Scheduled |

1
1
1
1

1

1
Completed <---- Running

I i

1

1
I Message (for ACCEPT)
I

i 1
I | ACCEPT
I | DELAY

I Delay time has passed
1
1

1 1

\/ 1
Terminated <-- Blocked ---

1

1
->+

The task states are as follows:

• Ready — the task is competing for a resource
The processor is a resource
Another task is using the processor

• Running — the task is executing on a processor

• Blocked — the task is waiting for an event or condition to occur
ACCEPT processed waiting for a message
DELAY processed, waiting for specified time to pass

• Completed — the task body has finished executing

• Terminated — the task is about to go out of existence, the final state

A blocked task can be killed; thus the change of state from blocked to terminated.

■Message Passing, When Tasks Rendezvous

Two or more tasks may communicate by sending messages. Message passing syntax in
Ada is bi-directional. Since this is an introductory class, the message passing syntax used
is limited to one directional. One or more tasks can send messages to the same task entry
point; the messages are received in the order sent. Examples of message passing are
shown below.

323

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Example Sending Task Receiving Task

Simple
Message worker.go;

TASK worker IS
ENTRY go;

END worker;
TASK BODY worker IS

ACCEPT go;
END worker;

Message
With One
Parameter

worker.run
(repeat = 5);

TASK worker IS
ENTRY run (repeat : IN Integer);

END worker;
TASK BODY worker IS

ACCEPT run (repeat : IN Integer) DO
save_repeat := repeat;

END run;
END worker;

Message
With
Multiple
Parameters

worker.run
(repeat = 5,
length = 12);

TASK worker IS
ENTRY run (repeat : IN Integer;

length : IN Integer);
END worker;
TASK BODY worker IS

ACCEPT run (repeat : IN Integer;
length : IN Integer) DO

save_repeat := repeat;
save length := length;

END run;
END worker;

Message passing characteristics include the following items:

• Message passing is tied to object-oriented methodology

• In Ada message passing is done by rendezvous (a method of synchronization
where sending and receiving tasks WAIT)

• Tasks exchange messages to synchronize activities

• Tasks exchange messages to pass data (as in the following example)
task_one.start (id_num =3); — Sends a message
ACCEPT start (id_num : IN Natural) DO — Receives the message

my_num := id_num;
END Start;

324

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

• Each task has a unique identifier (see CSci 131 for details)

• A message is sent to a single task

• When messages are send to all task, that is called a broadcast

• Message passing works on computers with distributed memory (memory is
associated with a single processor)

• Message passing works on distributed computers on a network (like a
collection of PCs)

• Message must know the target task (for example: "task_one.quit;" where the
target task name and entry point are specified

• Target task may not need to know source task

• The programmer determines pattern of communication

■Task Parameter Modes

Tasks have the same parameter modes as PROCEDURES in Ada. The TASK parameters
are defined in the table below.

Parameter
Mode

Legal In
Tasks

Used In
Class Description

IN Legal Yes
Message contents passed into the task, are
constants in the TASK, and may not be
changed

OUT Legal No
Message contents passed out of the task, the
parameter value is defined (assigned) inside the
subprogram

INOUT Legal No
Message contents passed into the task, the
parameter value is defined (assigned) inside the
subprogram

■Shared Memory

Shared Memory -- a global memory space that is accessible by two or more tasks. Tasks
can communicate with each other by writing and reading into the global shared memory.

Shared Memory I

I Task One I I Task Two I I Task Three I I Task N I

325

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Shared memory solves the intertask communication problem, and introduces a new
problem — several tasks accessing the same memory location simultaneously

I Shared Memory |
I x := 0; |r __ »

I I
I l

I Task One I I Task Two |
I x := x+1; | | x := x+2; |

In the diagram above (starting with a shared memory variable x := 0), the value of x can
be any of the following x is 1, x is 2, or x is 3.

• Possibility one — the tasks start at the same time, plus x is 1 if task one
finishes last

• Possibility two -- the tasks start at the same time, plus x is 2 if task two
finishes last

• Possibility three ~ either task starts after the other task completes — this
means x is 3

The value of x is determined by factors outside programmer control. This is an example
of non-determinant behavior. This behavior is caused by race conditions.

Shared Variables — variables in common between two or more tasks:

• Only one task at a time can write to a shared variable (without causing
problems)

• One or more tasks can read from a shared variable at the same time

• Shared variables do not have to be accessed by each task

task_one task_two task_three
I I I I
shared variable "a" shared variable "b"

• Shared variables should have access control in order to avoid race conditions
- like use of a critical section

• Relatively simple to program

• Multiple processors can access a central memory (for example, Felix has one
memory and four working processors / all memory is available to every
processor except for small sections of memory that may be exclusively used
by one processor for very short time periods)

326

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Critical Section ~ Controlling Access to Shared Memory

• Critical section as part of an infinite LOOP (see Semaphores)

LOOP
non-critical section
entry protocol
critical section — « « « « « « « « «
exit protocol
non-critical section

END LOOP;

• Definitions

Critical section -- a sequence of statements that access a shared item (like
the same location in shared memory)
Mutual exclusion -- at most one task at a time accesses the shared item
(like the same location in shared memory)
Contention — two or more tasks competing for the same resource (like the
same location in shared memory)
Communication — two or more tasks passing information from one task to
another task

■Semaphores

A semaphore is a collection distinct states used to control access to a critical section. A
semaphore is most often an integer-based variable that can take only non-negative values.
In this class a semaphore is modeled as task that is a collection of distinct states.

Two state semaphore (Lock or Unlock), Infinite LOOP
BEGIN >+---> L o c k > Unlock — +

I I
+ < ---+

TASK semaphore IS
ENTRY lock;
ENTRY unlock;

END semaphore;

— Declare a TASK

— TASK BODY demonstrates semaphore
— LOOP is an infinite loop

put_line (Item = "locked");
put line (Item = "unlocked");

TASK BODY semaphore IS
BEGIN

LOOP
ACCEPT lock;
ACCEPT unlock;

END LOOP;
END semaphore;

The example above is a model of a semaphore with two states: lock and unlock. After
task "A" sends a successful "lock" message to the semaphore, the semaphore task is
waiting for an "unlock" message. If task "B" sends a "lock" message to the semaphore

327

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

after task "A" does, then task "B" must wait for task "A" to send an "unlock" message to
the semaphore. Hence a semaphore can be used to control access to shared variables.
Access to the shared variables is limited to one task at a time. The example below is a
three-state semaphore.

Three state semaphore (Green, Yellow, Red), Infinite LOOP
— BEGIN >+-- > green > yellow > red — +

I I
+< --+

TASK TYPE stop_light IS
ENTRY turn_green;
ENTRY turn_yellow;
ENTRY turn_red;

END stop_light;

— Declare a task type

TASK BODY stop_light IS
BEGIN

LOOP
ACCEPT turn_green;
ACCEPT turn_yellow;
ACCEPT turn_red;

END LOOP;
END stop_light;

TASK BODY demonstrates semaphore
— LOOP
put_line
put_line
put line

is an infinite loop
(Item = "Green Light");
(Item = "Yellow Light");
(Item = "Red Light");

traffic_light : stop_light;
The three-state semaphore proceeds through the ordered set of states: green, yellow, red,
and then repeats. A four state semaphore can be created by adding another ACCEPT
statement. A five state semaphore can be created by adding two ACCEPT statements.

In the previous section on shared memory, it was stated that shared variables should have
access control in order to avoid race conditions. The two-state semaphore is an ideal
protocol to the control the access to variables shared between tasks. In a program where
multiple tasks have access to shared variables, the use of the semaphore insures that only
one task at a time can access the shared variables (this is called mutual exclusion). The
use of a semaphore task is shown in the example below.

semaphore.lock; — The entry protocol to the critical section
— Critical Section
— Ada source code to update variables shared between tasks
semaphore.unlock; — The exit protocol to the critical section

The examples above are infinite loops without an exit. In order for the task to complete
and then terminate, a SELECT block with an EXIT must be added to the TASK BODY.
The semaphore examples in the table below contain the entry point quit. These examples
complete and terminate correctly.

328

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Example Semaphore Declaration | Semaphore Usage

Simple
Semaphore

TASK semaphore IS
ENTRY lock;
ENTRY unlock;
ENTRY quit;

END semaphore;

TASK BODY semaphore IS
BEGIN

LOOP
ACCEPT lock;
SELECT

ACCEPT unlock;
OR

ACCEPT quit;
EXIT;

END SELECT;
END LOOP;

END semaphore;

semaphore.lock;
— Critical activity
semaphore.unlock;

Array of
Semaphores

TASK TYPE semaphore IS
ENTRY lock;
ENTRY unlock;
ENTRY quit;

END semaphore ;
TASK BODY semaphore IS
BEGIN

LOOP
ACCEPT lock;
SELECT

ACCEPT unlock;
OR

ACCEPT quit;
EXIT;

END SELECT;
END LOOP;

END semaphore;
TYPE semaphore array IS

ARRAY (1..5) OF
semaphore;
this_semaphore :

semaphore array;

this_semaphore(i).lock;
— Critical activity
this_semaphore(i).unlock;

■Terms And Definitions

Numerous definitions related to concurrency are introduced in the class lecture. The
complete collection of these definitions is placed at the end of this document (one
convenience location).

329

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Term Definition

Asynchronous

Refers to communication between tasks, the sending task leaves the
message where the receiving tasks can get it (the implication is that
the sending task does NOT wait for the receiving task(s) to
acknowledge the message)

Communication Two or more tasks passing information from one task to another
task

Concurrent
Program

A program specifying two or more sequential activities to be
preformed as tasks

Contention Two or more tasks competing for the same resource (like the same
location in memory)

Critical Section

A section of code that performs an operation that must NOT be
executed by more than one task at a time; such as, a sequence of
statements that access a shared item (like the same location in
memory)

Deadlock A state where a task is waiting for an event that will NOT occur
Lockout Indefinite postponement

Message Passing A mechanism for enabling one task to make information available
to other tasks by directing it to the tasks concerned

Multi-Tasking The sharing of a single processor among a set of competing tasks

Mutual
Exclusion

A mechanism to ensure that only one task at a time performs a
specified action; such as, at most one task at a time accesses the
shared item (like the same location in memory)

Non-
Determinism

A program property, where results are in part determined by factors
external to the program

Parallel Program A concurrent program designed for execution on parallel hardware
(implies more than one processor)

Process (Task) A sequential program
Race Condition Two or more tasks competing for a resource or state

Semaphore A collection of distinct states used to control access to a critical
section

Synchronous

Refers to communication between tasks, message passing between
tasks such that the sending and receiving tasks rendezvous (the
implication is that the sending task waits for the receiving task(s) to
acknowledge the message)

Waiting A task awaiting a change in state or a message
Wait, Busy A task executes a loop awaiting a change in state or a message

Wait, Simple Just waiting (no other activity occurring in the task)

Return to Index

330

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

IMAGE EVALUATION
I C O I I M K b L I 5)

1.0

l.l

l £

L£

■■
2.2

2.0

1.8

1.25 1.4 1.6

150mm

IIW IG E . In c
1653 East Main Street
Rochester. NY 14609 USA
Phone: 716/482-0300
Fax: 716/288-5989

0 1993. Applied Image. Inc./All Rights Resented

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

